音频交换混合矩阵设计与实现

发布者:心有归属最新更新时间:2011-07-01 来源: 21世纪电子网关键字:音频交换混合矩阵  音频矩阵  FPGA 手机看文章 扫描二维码
随时随地手机看文章
     音频交换混合矩阵是各种会议、演播、指挥系统的核心设备,连接不同的音频输入、输出设备,实现音频的交换及混合功能,并实现音频信号的控制与调度。
  传统的音频矩阵通常基于模拟开关电路设计,设计复杂,实现难度较大,不适合构建中大规模交换矩阵。而且,大多数矩阵不具备音量调节及信号混合功能,需要配合调音台、信号混合器设备使用。

  本文提出一种基于FPGA ( Field ProgrammableGate Array)的音频交换混合矩阵的设计方案。该方案以交换技术原理为基础,采用数字音频信号采样及处理技术,构建交换混合矩阵,实现了16 ×16路音频信号的交换、混合;设计及实现难度小,且可根据系统需求裁减或增加系统交换容量、设置音频信号采样精度及采样速率;每路输入、输出信号的音量可以独立进行控制;还具有输入输出延时低、信道间隔离度高、音质好的特点。

  1 音频交换混合矩阵的数学模型

  1. 1 交换系统原理

  交换技术源于电话通信,其基本任务就是在大规模网络中实现各用户之间信息的端到端的有效传递。交换技术的原理就是通过设置好的路径,将源端的数据可控地发往目的端。

  对于音频系统,交换即指将音频信号从输入端经过一系列节点转发到输出端。

  1. 2 交换混合矩阵数学模型

  基于2. 1所述交换技术原理,可构建交换系统的一般数学模型。将多输入输出的交换系统抽象为一个矩阵P,其输入和输出信号抽象为两个向量( x,y) ,交换系统实现的功能就是将输入向量通过矩阵的运算转换为输出向量:


  其中pij ∈[0, 1 ],代表输入与输出的对应关系。n和m 分别代表输入和输出信号个数。当n = 1时,该系统为单输入系统;当n > 1时,该系统为多输入系统。

  当m = 1时,该系统为单输出系统;当m > 1时,该系统为多输出系统。

  对于一个音频交换混合系统, pij即代表了某路输入与某路输出的对应关系,以及音量信息。最终,单独的某路输出信号yj 可以表示为:



  本方案的核心技术,是将多路模拟音频输入信号转换为数字输入向量,并构建数字交换混合矩阵,通过对矩阵的运算得到数字输出向量, 并将输出向量转换为模拟音频输出信号,分配至各输出端口,最终实现音频交换混合矩阵。

  在此,设向量A、B 分别为输入和输出音量控制向量,矩阵Q 为控制矩阵,则交换矩阵P变换为:


  综上,构建起系统的最终数学模型为:


 

 其中qji = 0, 1。

  由式(4)可知,第j路输出的最终结果yj 为:


  2 系统方案设计概述

  2. 1 系统信号流程

  根据式( 4)及式( 5) , 可构建出系统信号流程图,如图1所示。

交换混合矩阵系统信号流程图
图1 交换混合矩阵系统信号流程图。

  ai 和bj 由音量控制芯片来实现,数/模及模/数转换分别由专用芯片来实现,矩阵Q 和多路加法器由FPGA来实现。

  系统交换容量设定为16 ×16, 即n = 16, m =16。针对不同系统需求,可扩展或缩减交换容量。

  2. 2 系统硬件设计

  由系统信号流程图可知,系统总体的硬件模块由输入音量控制、数/模转换、交换混合矩阵、模/数转换、输出音量控制等组成。系统总体硬件模块框图如图2所示。

交换混合矩阵总体硬件模块结构框图
图2 交换混合矩阵总体硬件模块结构框图。

  输入音量控制芯片选用PGA4311,其增益调节范围为31. 5 dB~ - 95. 5 dB。使用SPI总线对其进行控制。

  输入模/数转换芯片选用PCM4204,该芯片采用IO接口控制工作模式和参数。具体设置方式见文献。

  输出数/模转换及音量控制芯片选用PCM1681,工作于从机方式,使用I2C接口对其进行控制。具体设置及使用方法见文献。

  通过对模/数及数/模转换芯片的设置,可以根据系统需求调整数字音频信号的采样精度及频率。

  本文所述方案实例的采样频率为97. 7 kHz,采样精度为24 bit,采用左对齐PCM编码方式传输,其传输时序图如图3所示。

PCM编码传送时序(左对齐)

图3 PCM编码传送时序(左对齐)。

  2. 3 FPGA及其程序设计

  FPGA内部包含串/并转换、交换矩阵、混合、并/串转换、时钟模块和矩阵控制模块,其内部模块框图如图4 所示。FPGA 选用Altera的EP2C35 芯片,其具体参数见文献。

  2. 3. 1 时钟模块

  时钟模块的功能是为串/并、并/串转换模块提供统一的全局时钟。系统需要的时钟信号有三种,分别是:系统时钟( SCK) 、位时钟(BCK)和声道时钟(LRCK) ,各时钟频率由采样频率( fS )决定:


 

FPGA内部模块框图
 

图4 FPGA内部模块框图。

  本系统中,采样频率fS 为97. 7 kHz,通过一个50MHz的外部时钟信号分频产生上述各个时钟。

  在模块内建立一个9 bit累加计数器Q,在时钟信号的上升沿完成一个递增计数, 当数值计到满值111111111时, 在下一个时钟周期将Q 置0。将XCLK、BCK、LRCK输出分别连接到计数输出的第0、第2和第8位,并将第3 - 第7位合并成另一个计数输出S_Count,用于控制串- 并和并- 串转换的位计数。所以,实际生成的fSCK为25 MHz, fBCK为6. 25MHz, fLRCK和fS 为97. 7 kHz。

  2. 3. 2 输入串/并转换模块

  该模块负责将PCM4204输入的串行PCM编码转换为并行数据,送入交换矩阵模块进行处理。模块内部建立通过一个32 bit移位寄存器( S_Buf) ,用来存储串行数据,根据声道时钟(LRCK)的动作来控制并行输出。串/并转换流程如图5所示。

串/并转换流程图

图5 串/并转换流程图。

[page]

  2. 3. 3 矩阵控制模块

  该模块的功能为:接收外部控制单元的命令,控制矩阵实现转接操作。FPGA保留10个GP IO作为使能控制端口,定义为表1。

表1 矩阵控制端口定义

矩阵控制端口定义

  模块的输出是16组16 bit并行数据,形成一个矩阵表。其中,每组数据代表输出端口,该组中的每个bit代表对应的输入端口,表中的元素代表相应的输入与输出之间的连接关系, 0表示断开, 1表示连接。

  使用时,先选择需要进行操作的输入和输出端口以及操作状态,然后向EN输入高电平,触发控制电路进行工作,将选择的输入与输出信号相连接或断开。

  2. 3. 4 混合模块

  该模块由数据缓冲寄存器(AdderBuf)和加法器(Adder)两部分组成。数据缓冲寄存器读取控制端口( Sel)的状态,然后判断各个输入是否有效,即是否送入到输出端口。若某输入端口有效,则将该端口数据直接送入加法器;若无效则送出数据0。

  2. 3. 5 交换矩阵模块

  交换矩阵的工作原理是一个16转256的分配器,将每一路输入分配为16路,分别送入每一路输出的混合模块中。其结构如图6所示。

交换矩阵模块结构图

图6 交换矩阵模块结构图。

  2. 3. 6 输出并/串转换模块

  该模块负责将混合模块输出的24 bit并并行数据转化为PCM1681能够接收的串行PCM编码。数据传输格式与PCM4204相同。模块内部建立一个24 bit移位寄存器,用来产生串行输出,根据声道时钟(LRCK)的动作判断读取并行输入。并/串转换流程如图7所示。

并/串转换流程图

图7 并/串转换流程图。

  3 系统仿真及实现

  3. 1 系统仿真

  FPGA总体端口及模块框图如图8所示。

FPGA总体端口及模块框图

图8 FPGA总体端口及模块框图。

  由时钟输入端(CLK)输入50 MHz时钟信号;在交换控制端口送入控制信号,使In_0与Out_0相连, In_1与Out_1相连, ……, In_7与Out_7相连,控制信号输入如图9所示。

控制信号输入

图9 控制信号输入。

  在第一路串行信号输入端( In_0)的左声道输入时序输入16进制串行数据000000,在右声道输入时序输入111111;同理,在In_1的左声道输入时序输入222222,在右声道输入时序输入333333; ?在In_7的左声道输入时序输入EEEEEE,在右声道输入时序输入FFFFFF。串行数据输入如图10所示。

串行数据输入

图10 串行数据输入。

  系统的串行输出端有相应数据输出, Out_0 端左声道输出数据为000000, 右声道输出数据为111111,与In_0输入数据一致;Out_1端左声道输出数据222222,右声道输出数据333333,与In_1输入数据一致; ?; Out_7 端左声道输出数据EEEEEE,右声道输出数据FFFFFF,与In _7 输入数据一致。

  串行数据输出如图11所示。

串行数据输出

 图11 串行数据输出。

  改变控制端口数据,使In_1的左声道输入(数据为222222 ) 与In _ 2 的右声道输入(数据为555555)与Out_0的左声道输出连接。由图3 - 5可见,Out_0串行数据输出变为777777。串行数据混合输出如图12所示。

  由以上仿真结果可知, FPGA 整体设计能够实现串行数字音频信号的交换与混合,达到预期设计要求。

串行数据混合输出

图12 串行数据混合输出。

  3. 2 系统实现

  交换混合矩阵实物照片如图13所示。

交换混合矩阵实物照片

图13 交换混合矩阵实物照片

  实物测试时,先将交换混合矩阵接入嵌入式控制系统,利用嵌入式控制系统对其进行控制。采用计算机、MP3、便携式CD 机、信号发生器等播放的音频信号作为输入源,扬声器及耳机、示波器等作为输出设备,测试交换、混合及音量调节功能。经*测试,输出音频信号无明显失真。在多路音频信号混合输出时,仍然可以保证较好的信号质量。输入输出延时的测量波形如图14所示,约为620μs。通过逐点测量得到幅频特性曲线如图15所示,通频带为20 Hz~38. 44 kHz。

输入输出延迟测量波形
 

图14 输入输出延迟测量波形。

幅频特性曲线
 


图15 幅频特性曲线。

  测试结果证明,交换混合矩阵能够正确接受控制系统的命令,完成音频信号的交换、混合及音量调节功能。

  4 结论

  本文针对音频交换系统应用需求,提出了一种基于FPGA音频交换混合矩阵的设计方案,并进行软硬件设计阐述及仿真,并完成了实物制作与测试。

  本文所述方案采用FPGA作为交换混合矩阵的核心器件,因此具有较强的通用性,可根据实际需要裁减或增加交换容量、配置音频信号采样频率及采样精度等特点。

  经仿真及实物测试,基于FPGA的音频交换混合矩阵能够实现音频信号的交换、混合及音量调节,同时具有延时低、隔离度高、音质好的特点,可适用于各种会议、指挥、通信等场合。

关键字:音频交换混合矩阵  音频矩阵  FPGA 引用地址:音频交换混合矩阵设计与实现

上一篇:基于FPGA无线传感器网络MAC控制器的设计
下一篇:基于XQ2V1000 FPGA的数字脉冲压缩系统实

推荐阅读最新更新时间:2024-05-02 21:28

基于NI LabVIEW平台快速开发医疗电子设备
  针对 医疗设备 行业的投资最近几年一直处于上升阶段,在过去两年,针对医疗设备的风险投资几乎翻倍,2007年更是达到了40亿美元。无论从全球角度还是在中国市场,小型的、未上市的医疗设备制造商在具备产品、市场和创新的元素下,正逐步成为投资新宠。对于这些小型公司来说,如何从激烈的市场竞争中站稳脚跟并脱颖而出是非常困难的事情。他们的核心技术人员也许是生物医学领域的专家,掌握了一定的专利或研究成果,但如何在团队人员非常有限的情况下,快速的将专利或研究成果转化成产品、并保证产品的可靠性和稳定性是很大的难点。通过NI所提供的图形化开发环境LabVIEW和商业化 嵌入式 原型平台,领域专家或研发人员可以无缝集成硬件I/O与算法,在有限的团队人
[测试测量]
基于FPGA/CPLD设计与实现UART
摘 要:UART是广泛使用的串行数据通讯电路。本设计包含UART发送器、接收器和波特率发生器。设计应用EDA技术,基于FPGA/CPLD器件设计与实现UART。 关键词:FPGA/CPLD;UART;VHDL ---UART(即Universal Asynchronous Receiver Transmitter 通用异步收发器)是广泛使用的串行数据传输协议。UART允许在串行链路上进行全双工的通信。 ---串行外设用到RS232-C异步串行接口,一般采用专用的集成电路即UART实现。如8250、8251、NS16450等芯片都是常见的UART器件,这类芯片已经相当复杂,有的含有许多辅助的模块(如FIFO),有时我们不需要
[半导体设计/制造]
英特尔和Altera在嵌入式展上发布专为AI打造的边缘和FPGA产品
全新的边缘优化处理器和FPGA在零售、工业和医疗保健等边缘计算市场中推动AI无处不在 今天,英特尔及其子公司Altera在嵌入式展(Embedded World)上,宣布推出全新边缘优化处理器、FPGA以及市场就绪的可编程解决方案,致力于将强大的AI功能扩展到边缘计算。这些产品将为适用于零售、医疗保健、工业、汽车等行业的人工智能边缘设备提供动力。 英特尔公司副总裁兼网络与边缘解决方案事业部总经理Dan Rodriguez表示,“下一代英特尔边缘优化处理器与独立GPU,可发挥强大AI功能,从而助力企业将AI与计算、媒体和图形工作负载更加无缝地结合。从制造业到医疗保健行业,英特尔凭借其丰富的边缘AI经验,及边缘就绪芯片
[网络通信]
英特尔和Altera在嵌入式展上发布专为AI打造的边缘和<font color='red'>FPGA</font>产品
Xilinx:FPGA向标准化虚拟SoC平台演进
  “ 未来的FPGA,将会采用创新的迭堆式封装(SIP),即在一个封装里放多个裸片的技术,到那时,FPGA将成为一个标准的、虚拟的SoC平台来应用。”   半导体行业最让人称道的是,能把沙子做成比金子还要贵的产品,并且这个故事一直延续到今天。这也激发了人们的创新意识,并不断展示创新性思维将创新技术和融合技术给人们带来的奇迹。   FPGA向平台化方向发展   一年前,记者曾采访过Xilinx公司副总裁兼首席技术官Ivo Bolsens,当时Ivo Bolsens就表示过,目前的FPGA厂商只充当技术跟随者的角色已不能满足客户的要求,而是要根据市场发展的需求,不仅在器件生产技术和设计架构方面不断创新,还要在FPGA
[测试测量]
高云半导体发布全新22nm高性能FPGA家族——晨熙5代(Arora V)
2022年9月26日, 广东高云半导体科技股份有限公司隆重发布其最新工艺节点的晨熙家族第5代(Arora V)高性能FPGA产品。 晨熙家族第5代(Arora V)产品采用22nm SRAM工艺,集成270Mbps~12.5Gbps高速SerDes模块;集成PCIe2.0硬核,支持PCIE x1, x2, x4以及x8模式;集成MIPI硬核,单Lane速率高达2.5Gbps;支持DDR3接口,速率高达1333Mbps。此家族产品逻辑资源覆盖25K Luts~138K Luts,可以满足通信,工业,安防监控,视频图像,医疗,汽车,电力系统等各行业的应用需求。 “22nm晨熙家族第5代(Arora V)产品是高云半导体发展历
[嵌入式]
高云半导体发布全新22nm高性能<font color='red'>FPGA</font>家族——晨熙5代(Arora V)
基于FPGA的简易可存储示波器设计
  引言   传统的示波器虽然功能齐全,但是体积大、重量重、成本高、等一系列问题使应用受到了限制。有鉴于此,便携式数字存储采集器就应运而生,它采用了LCD显示、高速A/D采集与转换、ASIC芯片等新技术,具有很强的实用性和巨大的市场潜力,也代表了当代电子测量仪器的一种发展趋势,即向功能多、体积小、重量轻、使用方便的掌上型仪器发展。   系统组成结构及工作原理   系统的硬件部分为一块高速的 数据采集 电路板。它能够实现双通道数据输入,每路采样频率可达到60Mbit/s。从功能上可以将硬件系统分为:信号前端放大及调理模块、高速 模数转换 模块、FPGA逻辑控制模块、单片机控制模块、USB数据传输模块、液晶显示和键盘控制等
[测试测量]
英特尔推出Agilex 7 FPGA,搭载全新收发器打造业界领先的数据传输速度
英特尔推出Agilex 7 FPGA,搭载全新收发器打造业界领先的数据传输速度 英特尔Agilex 7 FPGA F-Tile提高了灵活性、增加了带宽并实现了业界领先的数据传输速度 近日, 英特尔发布了英特尔Agilex® 7 FPGA F-Tile,并配备市场领先的现场可编程门阵列(FPGA)收发器1。 在当今以数据为中心的世界,该产品将帮助客户在带宽密集的领域应对挑战,包括数据中心和高速网络。英特尔Agilex 7 FPGA F-Tile为嵌入式、网络和云计算客户而设计,是一个灵活的硬件解决方案,具有业界领先的收发器性能,提供高达116 Gbps和强化的400 GbE知识产权(IP)。 英特尔公司副总裁兼可编程解
[网络通信]
基于FPGA和USB 2.0的高速CCD声光信号采集系统
0 引 言 在现代通信和雷达领域中,宽带、高增益、实时并行处理是现代接收机的重要标志。因而,这种具有高速并行处理能力和特有的大带宽性能的声光处理系统具有巨大的潜在优势。以声光器件为基础的接收机除了具有宽带、高增益、实时并行处理等特点外,还具有容量大,体积小,功耗低等优点。因而,采用声光信号处理技术解决带宽、高增益和实时并行处理问题具有重要意义,声光信号的采集系统的设计是整个声光系统关键之一。这里设计了一个基于FPGA和USB 2.0的高速CCD声光信号采集系统,为声光信号采集提供了硬件平台。 1 系统概述 声光信号采集系统框图如图1所示。系统主要由CCD声光信号采集模块、A/D转换模块、FPGA驱动和控制模块及USB接口
[工业控制]
基于<font color='red'>FPGA</font>和USB 2.0的高速CCD声光信号采集系统
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved