由于液晶面板的应用已从笔记型电脑,扩展到行动电话、汽车导航、家用电视等领域,因此,LCD的自然色再现性成为各界关注的焦点,某些特殊领域甚至要求LCD的色彩再现范围超过NTSC的色彩规格。
由于CCFL的先天特性导致无法突破某些色彩障碍,使得在色彩表现方面,无法令消费者享受到类似大自然丰富艳丽的影像,尤其无法完美表现出鲜艳的红色色彩。
然而,因为追求高演色的目标,取代CCFL光源的技术也就陆续的被提出,其中,在被看好的莫过于利用多色led来作为背光源,其宽广的色域,已经吸引诸多业者的注重,也纷纷的投入相关开发。
一、传统CCFL红光表现薄弱
目前, 大多显示器业者都使用冷阴极灯管作为显示器的光源,以及搭配RGB三原色作为阵列分布的彩色滤光片,一般而言,CCFL的色温大约在4800K左右,反映到色域表后,可以发现仅有NTSC规范的80%左右。
图一是CCFL的光谱及彩色滤光片的分布特性,从图中可以发现, 利用CCFL加上RGB三色的彩色滤光片, 在波长490nm与590nm附近色彩的表现能力较差, 而出现一些经过彩色滤光片混色后色域较窄的问题。
当然这对于一般显示画面或应用,并不会出现太大的色彩问题或视觉感受变差, 但是在面对仪器量测的情况与特定色彩表现的环境下, 就能明显的比较出不纯辉线有subpeak的现象。尤其CCFL在对红光的表现更为薄弱,这是CCFL在色彩的表现上最难以满足严格要求的一点。
▲图一:CCFL的光谱及彩色滤光片的分布特性
然而,对于以CCFL作为背光灯源,是存在特定的因素,而影响到色域的表现,但是未必是完全无法可想。可以根据传统的三色彩色滤光片加以改良,来弥补此一缺陷。
▲图:CCFL背光的液晶显示器-三星 931C也可以达到97%NTSC的高色域
二、利用多色彩色滤光片来弥补不足
同样是使用CCFL作为背光灯源的模组基础下,奇美电子开发出了3款采用4色以上多色滤光片来作为色彩表现,分别是在原有的R(红色)、G(绿色)和B(蓝色)3色上,增加了追加了Y(黄色)和C(青色)的5色滤光片的面板。在RGB基础上多出Y色(黄色)的4色彩色滤光片的面板,和在RGB3色基础上增加W(白色)的4色彩色滤光片的面板。
事实上,这样的设计,同样的扩大了色彩表现范围,以增加Y(黄色)和C(青色),及增加Y(黄色)的面板为例,其色彩表现范围与NTSC范围相较, 分别为115%和109%。而增加白色的彩色滤光片的目的仅为提高面板整体的亮度。当然,这是在原有光源的基础下,利用彩色滤光片来达到提升色域的目的, 但是终究由于先天的限制,无法大幅度的让色彩表现范围扩大, 或许还是需要从背光源方面进行改变,才得以达到扩大色彩范围的目标。
以目前的技术与元件来看,相当适合的方式是利用LED作为背光源, 由于LED具有多波长的特性,可依照需求生产出独特的波长,及利用电路设计来完成亮度控制。
三:三色LED背光模组实现高色域理想
相对的,利用三色或多色的LED作为背光源, 在混色的表现上,就不会出现上述的一些部分色域窄化的问题, 图二是以三原色的LED作为背光,所表现出来的就比以CCFL来的较好, 尤其在红光的部分,可以获得非常宽广的色再现范围, 也不会造成类似CCFL所出现不纯辉线的subpeak, 并让各原色的色纯度大大的提高。
▲图二:三原色的LED的光谱及彩色滤光片的分布特性。
此外,在色域的表现,更可以得到更大范围的表现。 下表是日本LEIZ所发表的三色LED背光模组,从表中就可以发现,其所表现的色度, 经过测试后,LEIZ背光模组可达到NTSC的100%色域。日本LEIZ在这模组上使用了40颗高亮度的三色LED,并且在模组两边设置了Heatsink,让三色LED在模组内进行混光, 提供LCD所需要的光源。
四、SONY领先发表LED背光液晶电视
而SONY在2004年底,推出由R、G、 B三色LED作为背光源的液晶电视,让多色LED背光模组达到实用化的阶段, RGB三色LED表现出的色域超过CCFL的150%, 对色彩的表现能力大幅超越传统电视机常用的sRGB。在过去使用传统的CRT做为显示元件的电视,在色彩表现上,无法显示的天蓝色系、 深绿色、深红色,及一些大自然中的鲜艳颜色,但在R、G、 B三色LED作为背光源的液晶电视都以经不是问题, 如果对照Pointer的768色高彩度色票上表现, 使用LED背光模组的液晶电视可以高达其涵盖颜色领域的82%, 尤其是在绿色与红色可以表现出非常宽广色彩度, 黄色与橙色部分更超过sRGB的色域,然而相对于CCFL或传统CRT萤幕, 仅能达到约一半的色彩领域。
特殊排列弥补色系弱点
根据实验,人类眼睛对于光线颜色的感觉程度,最高的是绿光,红光约是绿光的1/3,而相对于蓝光,是蓝光的10倍。 基于如此的特性,在LED颜色搭配上,也有了一些变化,因为要满足视觉感度,所以大多是以红光×1、蓝光×1,以及绿光×2的比例来进行设计,但加上考量到红光的色温较低。所以SONY在背光LED的是以「绿-红-蓝-红-绿」作为排列结构, 来达到最佳的色彩输出。因为液晶萤幕的色域并不是仅仅靠背光源,前端的彩色滤光片更是重要决定因素之一, 所以整体而言,液晶萤幕的色域范围取决于背光模组的光源特性,与彩色滤光片的穿透率特性组合结果。当然,在面对可表现如此宽广色域的三色LED背光模组, SONY更在彩色滤光片上进行了相当的改良,由于LED的色度分布有一定的范围度,所以必需搭配可以使穿透光的波长范围变窄,而且可以维持一定色纯度的彩色滤光片, 期望能在配合LED光源的特性下,充分发挥相互配合的色彩效果。
6色LED色域宽广能力令人讶异
如果是使用RGB三色或不同波长的多色LED作为背光源,在彩色滤光片上就不一定非用RGB三色,甚至可以使用紫色跟菊色双色的彩色滤光片,来搭配出更高的色域显示能力,呈现出更多的色彩。三菱电机与三星都已经发表出,利用6色LED作为背光模组的技术。三星是利用6色光源加上6色彩色滤光片面板新技术, 采用在具有RGBCYM6色(红、绿、蓝、青色、黄色、 洋红)波长的光源上配合使用具有RGBCYM分光特性的6色滤光片的方式。LED点灯方式是以场序交互点灯将显示时间错开,依次打开R(红)、G(绿)、 B(蓝)LED,解析度为1366×768、亮度为500cd/㎡,1000: 1的对比度。 由于能够直接看到LED光线,因此色彩表现达到了NTSC规格的110%。 82W耗电量,相当于同样亮度老式液晶面板耗能的60%。而根据资料,三菱电机所发表的这一款6色LED背光模组, 除了能达到色再现范围扩大之外,另一项特色是在生产成本上不会因此突然增多。
在技术上,三菱电机是利用LED不同的波长,来达到6种不同的颜色,分别是第一组的410nm(蓝)、540nm(绿)、615nm(红),以及第二组的430nm(蓝)、510nm(绿)、625nm(红)。在色度座标上分别可以达到,第一组:615nm(红1)的(0.664、0.321)、 540nm(绿1)的(0.291、0.666)、410nm(蓝1)的(0.154、 0.060)。
第二组:625nm(红2)的(0.682、0.308)、510nm(绿2)的(0.131、0.580)、430nm(蓝2)的(0.112、 0.173)。在显示尺寸为23吋、1280×768、亮度为80cd/m2的面板中,蓝光与红光LED各使用26颗,而绿光LED则使用了56颗,其sRGB比提高到了175%,大约可以涵盖自然界物体色彩的96%(以MunsELlColorCascade为标准)。
利用顺序交互点灯组成LED驱动电路
在LED电路驱动设计部分,多色LED背光大多是利用场序交互点灯方式形成「FieldSequence」,这样的话,可让背光模组中的6色LED与液晶面板的Sub-Pixel, 及3色彩色滤光片同步动作。
过去,液晶面板大多是利用三个Sub-Pixel组合而成一个画素,但利用这样的方式,除可得到更广的色彩表现范围外,还可获得更高细腻度的影像。但这样又会造成一些整体开发上的问题,因为这样的结构变化,使得无法延续使用部分零组件,包括部分的背光膜片、整体模组结构、色变换电路等等, 这些都是必须重新开发。
不过,因为这样的改革能够大幅度的改善色彩表现,及加上三菱电机宣称,并不会造成太大成本的增加,所以或许采用这样光源的设计,仅在初期必须投入较大的开发费用,而整体而言,材料成本结构并没有太大的变动。
此外,在这次三菱电机所发表的6色LED背光模组,在辉度的表现上只有80cd/㎡, 这样的结果,或许关键点还是整体背光模组设计的问题,因为, 虽然目前LED在亮度上面已经有不错的表现,但受限于模组材料的关系, 因此未来在模组整体亮度上必须多加以克服,才能达到商用化接受的程度。
四透光效率低是背光模组最大致命点
以目前LED亮度技术来看,在这一方面, 提高亮度并不是太大的困难,但是因为伴随而来的高耗电量以及散热的问题, 却是困扰着所有的工程师,再者,一味的朝这一方面发展, 而期望得到问题的解决也是不切实际。 因为亮度的提升总是会有到达瓶颈的时候, 如果因为在这一方面努力却造成使用寿命的减短,似乎有点得不偿失。 所以就整体而言,还是必须从改善背光模组的透光率开始进行,才是解决的根本之道。
由于背光光源必须使用Reflector、Diffuser等等的光学薄膜, 来达到光源平均投射的目的,但是往往光耗损的现象就会因此而产生,根据研究, 从传统背光光源所发射出来的光是100%的话,经过Reflector、 Diffuser等等的光学薄膜之后,只会有约60%的光通过背光模组进入到偏光膜,最后经过LC、Surface出来只剩下4%的光(图三)。
图三:背光模组透光能力相当有限。 (制图:卢庆儒)
也就是说,如果背光光源是1万nits,那么, 最后投射出来的光只会有400nits,假设LCD面板规格需要500nits, 那么背光光源的亮度就必须能够提供1.2~1.3万nits的亮度。
五、多色LED是未来背光源主流技术
从2004年SONY发表LED背光模组后, 液晶显示器用背光模组应可说是正式进入LED的时代, 虽然LED本身还有许多技术问题有待克服,不过, 未来传统冷阴极灯管的部分市场将逐渐被LED光源取代, 相信未来液晶显示器的影像画质与颜色会更加艳丽与细腻。
LED背光模组的色再现特性,使用R/G/BLED背光模组的液晶显示器适合应用在医疗、印刷、PC等领域,尤其是色温范围3000~9300K的家用液晶电视可以获得宽广的色再现范围。 由于LED背光模组的消费电力与制作成本还有很大的改善空间,因此, 今后除了LED背光模组的光学系统外,还需抑制LED本身的发热问题。(参考资料:光电科技杂志、日本NE杂志、三菱电机、SONY、日本LIEIZ相关资料)
上一篇:气温对LED护栏管的影响与对策
下一篇:改进光耦电路 减少电流消耗 延缓LED老化
推荐阅读最新更新时间:2023-10-18 15:19
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知