不同电源及功率等级的LED照明驱动器方案

最新更新时间:2011-07-05来源: OFweek半导体照明网关键字:电源  LED照明  驱动器 手机看文章 扫描二维码
随时随地手机看文章

  随着LED技术的发展,LED的应用已经从传统的小功率便携产品背光拓展至中大功率的室内照明、室外照明及手电筒等应用。根据驱动电源的不同,LED照明通常可以划分为交流-直流(AC-DC)LED照明、直流-直流(DC-DC)LED照明电源以及电池供电的LED手电筒等不同类型,LED灯具及其功率也各不相同,如3WPAR16、3×2WPAR20、10W/15WPAR30、15W/22WPAR38、1WG13、3WGU10、1WMR11、3WMR16、3W/9W/15W嵌灯、1W-3W阅读灯等。

  1、AC-DCLED照明解决方案

  安森美半导体在AC-DC电源供电的LED照明应用中,提供各种离线控制器及功率因数校正(PFC)控制器,并配合隔离及非隔离要求提供不同的LED应用方案。在交流线路电压与LED之间没有物理电气连接的隔离应用中,常见的拓扑结构有反激(Flyback)及双电感加单电容(LLC)半桥谐振。不同拓扑结构适合于不同的功率范围或是用于满足特别的设计要求。例如,反激拓扑结构是小于100W的中低功率应用的标准选择,而LLC半桥拓扑结构是大功率和高能效的首选方案。

LED

图1:不同功率范围的隔离型拓扑结构

  AC-DCLED照明应用中,小功率的LED应用通常以恒流(CC)来驱动,而恒压(CV)功能是在输出开路的情况下作为保护功能。大功率的LED应用可能需要在电路中增加功率因数校正(PFC),其中的AC-DC转换与LED驱动两部分电路既可能采用整体式(integral)配置,即两者融合在一起,均位于照明灯具内,也可以采用分布式(distributed)配置,如图2,从而简化安全考虑,并增加系统灵活性。

LED

图2:大功率LED驱动的分布式(distributed)配置结构

  从应用的具体功率范围来看,AC-DCLED照明的电源方案应用主要包括:

  1W-8W:G13/GU10/PAR16/PAR20照明

  8W-25W:PAR30/PAR38照明

  50W-300W:区域照明

  1).1W-8WAC-DCLED照明应用

  这类应用要求的输入电压为90至264Vac,能效达80%,同时提供短路保护、过压保护等保护特性,并提供350mA、700mA恒流,应用领域包括G13、GU10、PAR16、PAR20及嵌灯(downlight)等。

  这类应用中可以采用安森美半导体的NCP1015自供电单片开关稳压器。这颗器件集成了固定频率(65/100/130kHz)电流模式控制器和700V的高压MOSFET,提供构建强固的低成本电源所需的全部特性,如软启动、频率抖动、短路保护、跳周期、最大峰值电流设定点及动态自供电功能(无需辅助绕组)等。图3显示的是NCP1015在隔离型1W-8W范围AC-DCLED照明应用的电路示意图。值得一提的是,NCP1015同样可用于非隔离型(电路中不含高频变压器)1W-8W范围的AC-DCLED照明应用,电路中可以采用抽头(tapped)电感来提高MOSFET工作的占空比,并改善系统能效及电路性能。

LED

图3:安森美半导体8 W LED驱动应用电路示电图(输入电压为85至264 Vac)

  2).8W-25WAC-DCLED照明应用

  美国能源部(DOE)“能源之星”(ENERGYSTAR?)固态照明(SSL)规范中规定任何功率等级皆须强制提供功率因数校正(PFC)。这标准适用于一系列特定产品,如嵌灯、橱柜灯及台灯,其中,住宅应用的LED驱动器功率因数须大于0.7,而商业应用中则须大于0.9。但这项标准属于自愿性标准,即可以选择不遵从或是遵从。

  相应地,在8W-25WAC-DCLED照明应用中,我们考虑两种情况,一种是应用没有功率因数要求,即不需采用PFC控制器,另一种是要求采用PFC控制器。在不需要PFC的应用中,我们假定输入电压规格为90~132Vac或180~264Vac(或通用输入),能效达85%,提供短路保护及开路保护等保护特性,输出电流为350mA、700mA及1A恒流,相应地可以采用安森美半导体的NCP1028或NCP1351。其中,NCP1028是一款增强型单片开关稳压器,适用于在通用主电源输入的应用中提供数瓦至15W的输出功率。NCP1028的导通阻抗比NCP101x更低,提供800mA峰值电流,具备NCP101x的诸多特性,此外还提供过功率保护、内置斜坡补偿及输入欠压保护等特性。NCP1351则是一款固定导通时间、可变关闭时间脉宽调制(PWM)控制器,适用于成本至关重要的低功率离线反激开关电源应用。这颗器件支持频率反走,还具有闩锁输入、自然的频率抖动、负电流感测及扩展的电源电压范围等特性。图4显示的是90至264Vac输入条件下基于NCP1351的8W-25WLED照明方案。

LED

图4:基于NCP1351的8 W至25 W AC-DC LED照明应用电路示意图。

  需要PFC的8W-25WAC-DCLED照明应用中,假定输入电压规格为90至264Vac,功率因数高于0.9,能效达80%,提供短路及过功率保护,输出电流同样有350mA、700mA和1A等不同选择。在这类应用中,可以采用安森美半导体的NCP1607或NCP1608PFC控制器。NCP1607是一款高性价比的临界导电模式(CrM)PFC控制器。这颗器件与业界标准引脚完全兼容,简化工程师的设计。可调节的过压保护(OVP)及环路开路保护等功能也增强了设计灵活性及强固性。图5展示的是NCP1607/NCP1608在85至135Vac或185至264Vac输入条件下的LED照明应用方案。

LED

图5:基于NCP1607/8 PFC控制器的8 W-25 W AC-DC LED照明应用示意图

  3).功率高于50W的AC-DCLED照明应用

  在功率50W到300W的AC-DCLED应用广泛用于街道照明及大功率区域照明应用中,可以采用不同的LED驱动方案,假定其输入电压规格为90至264Vac,功率因数高于0.95,能效达90%。

  此类应用可以采用下述不同方案,适合不同应用要求:

  NCP1652:改进型单段式PFC

  NCP1607/8+NCP1377:临界导电模式PFC+准谐振电流模式PWM

  NCP1607/8+NCP1396:临界导电模式PFC+半桥谐振LLC

  NCP1901:最新型两段式(PFC+更高效率半桥谐振LLC)

  例如,在50W-150W的AC-DCLED应用中,既可以采用NCP1652这样的改进型单段式PFC控制器,也可以结合采用NCP1607/8PFC控制器及NCP1377准谐振(QR)模式PWM控制器。其中,NCP1377结合了真正的电流模式调制器和退磁检测器,确保任何负载/线路条件下提供完整的CrM工作,并确保最低的漏电压开关(准谐振工作)。NCP1652驱动带有可编程死区时间的信号,支持有源钳位或同步整流,提供优化的能效。这颗器件还具有输入欠压保护、过压保护、过流保护等保护特性,支持频率抖动、跳周期及临界导电模式(CrM)/不连续导电模式(DCM)工作。基于NCP1652、采用85至135Vac或185至264Vac输入的50W-150WAC-DCLED方案的示意图如图6所示。

LED

图6:基于NCP1652单段式PFC控制器的50 W-150 W AC-DC LED方案。

  50W以上功率的AC-DCLED照明应用如果需要更高能效的LED电源,则需要高能效的LED照明拓扑结构,往往从反激式拓扑结构转向谐振半桥拓扑结构,以充分发挥零电压开关(ZVS)技术的优势。NCP1396及NCP1901均是安森美半导体开发的LED电源用高能效半桥谐振方案。图7显示的是基于NCP1901的最新型PFC+谐振半桥LED驱动器方案,输入电压为90至264Vac,功率100W至300W,其中半桥段工作在固定频率以及固定占空比,用于降低开关损耗。

LED

图7:基于NCP1901的100W-300 W AC-DC LED照明方案

  2、DC-DCLED照明方案

  采用DC-DC电源供电的LED照明应用中,常见具体应用包括1W-3WMR11/MR16降压LED灯泡、1W-20W升压LED驱动器和20W-60W大功率LED驱动器。

  其中,在1W-3WDC-DCLED照明应用中,可以采用安森美半导体的CAT4201降压LED驱动器,这颗器件兼容于12V及24V系统,提供达350mA的LED驱动电流,能够在24V系统中驱动7个串联的LED,能效高达94%。这颗器件采用有专利的开关控制架构,帮助降低系统成本,支持CrM工作并提升能效。CAT4201还提供限流、热保护及LED开路保护等全面的保护特性。这颗器件在1W-3WDC-DCLED应用中的电路示意图如图8所示。

LED

图8:基于CAT4201的1 W-3 W DC-DC LED方案。

  而在功率范围达1W-20W的DC-DC升压LED应用中,可以采用安森美半导体的NCP3065/6或NCV3065/6(汽车应用版本)降压、升压、单端初级电感转换器(SEPIC)及逆变多模LED驱动器,并选择其中的升压电路模式。另外,功率范围达20W-60W的DC-DC降压LED应用中可以采用安森美半导体的NCP1034同步降压PWM控制器。

  3、LED手电筒驱动方案

  手电筒DC-DC LED照明方案包括升压型及降压型两种。1W-3W的升压型DC-DCLED手电筒应用中可以采用带真关闭功能的NCP1421升压DC-DC转换器,而1W-3W的降压LED手电筒应用中可以采用NCP1529低压降压转换器,二者的应用示意图见图9。

LED

图9:基于NCP1421及NCP1529的LED手电筒升压和降压方案

  4、总结

  安森美半导体是全球领先的高性能、高能效硅方案供应商,提供涵盖1至数百瓦功率范围的LED照明驱动及PFC解决方案。无论是采用AC-DC电源、DC-DC电源或是LED手电筒所采用的电池的LED照明驱动器,安森美半导体都能提供给客户对低成本、高性价比、高能效或是选择是否需要PFC的不同要求的LED照明驱动器方案。

关键字:电源  LED照明  驱动器 编辑:探路者 引用地址:不同电源及功率等级的LED照明驱动器方案

上一篇:汽车应用中高亮度LED驱动电路
下一篇:电子基础知识:LED优点及产业分类

推荐阅读最新更新时间:2023-10-18 15:25

低电磁骚扰开关电源的实现
0 引 言   电源装置是电子电气设备中所不可缺少的部件,开关电源以其效率高、体积小、重量轻、电压适应性好等优点,受到相关行业的青睐。但目前存在的缺陷是电磁骚扰大,对环境或对其他设备造成不利影响。目前对于可变负载的开关电源,笔者所了解到的产品最低输出噪声电压也在70 mV以上。设计低电磁骚扰的开关电源,也就成了许多设计人员的希望,为此提出了种种方法。本例设计要点不同于常规技术,而是采取了从源头上对电磁噪声进行消除,再结合一些常规措施。将电源输出端口的噪声电压降至20 mV以下,显著提高开关电源的电磁兼容性指标。    1 开关电源电路结构与降噪原理   该开关电源的设计目标是稳定20 V输出,输出电流0~2 A可变,用
[电源管理]
低电磁骚扰开关<font color='red'>电源</font>的实现
36V双通道、1.6A同步降压驱动器简化LED调光控制
LT3964可运作于4V至36V的宽广输入范围,提供两个独立控制而可以高达2MHz切换的LED驱动器,透过小型外部零组件构成了高整合度、精省的解决方案。 亚德诺半导体(Analog Devices, Inc.,ADI)宣布推出Power by Linear的LT3964,该元件为一款双通道、36V、高效率、同步、降压型LED驱动器,具内部40V、1.6A电源开关和I2C介面,借此简化LED调光控制。 LT3964运用固定频率、电流模式控制,并作为具准确电流调节的定电流和定电压源运行,以在汽车、工业和建筑照明应用中提供最佳LED照明。在全电流负载时,两个通道同步运行可产生高于94%的效率。 该元件的400kHz I2C介
[半导体设计/制造]
Multitest推出信号及电源完整性术语表
明尼苏达州圣保罗,2012年7月---面向世界各地的集成元件制造商(IDM)和最终测试分包商,设计和制造最终测试分选机、测试座和负载板的领先厂商Multitest公司,日前发布信号及电源完整性术语表。由Multitest的信号完整性工程师Ryan Satrom编制的新术语表解释了与电源完整性相关的主要术语和概念。 电源完整性是关于通过尽量降低电源配送网络(PDN)的噪音来向DUT提干净的电源电压学术。正在迅速成为测试接口设计中的最大挑战之一。 电源完整性的影响预计在未来几年将不断提高。对于测试业界来说,了解到测试接口所带来的电源完整性挑战的相关问题,并且提高其能力来应对这些挑战正在变得日益重要。
[测试测量]
白光LED电源系统电路模块设计
  随着彩色显示屏在便携市场(如手机、PDA 以及超小型 PC)中的广泛采用,对于一个单色 LCD 照明而言,就需要一个白色背光或侧光。与常用的 CCFL(冷阴极荧光灯)背光相比,由于 LED 需要更低的功耗和更小的空间,所以其看起来是背光应用不错的选择。白光LED 的典型正向电压介于 3V~5V 之间。由于为白光LED 供电的最佳选择是选用一个恒流电源,且锂离子电池的输入电压范围低于或等于LED 正向电压,因此就需要一款新型电源解决方案。   主要的电源要求包括高效率、小型的解决方案尺寸以及调节 LED 亮度的可能性。对于具有无线功能的便携式系统而言,可接受的 EMI 性能成为我们关注的另一个焦点。当高效率为我们选择电源最为关心
[电源管理]
白光LED<font color='red'>电源</font>系统电路模块设计
用高效开关电源优化高速通记产品的电源设计
    高速通讯产品(如ADSL、ROUTER等)通常需要一路或多路低电压供电电源,如3.3V、2.5V,甚至1.8V,由于MCU或DSP处理速率很高,因此消耗电流也很大,比如16路ADSL局端板的3.3V电源需要高达8A的电源,而1.8V电源需要的供电电流则更大(达10A)。虽然传统的开关电源模块能够满足上述要求,但在成本、体积、热损耗等方面仍给电流设计为员带来很大的压力。因此,本文介绍几种优化电源设计的实际电路,以供参考。 1 利用开关电源模块     众所周知,开关电源模块具有使用简单、可靠性高、EMI噪声低等优点,因此深得产品设计为员的喜爱,并成为通讯电源的首选方案。传统的通讯产品需要的电源数目较少,且通常以+5V
[应用]
大功率超声波电源的研究
内容摘要:针对大功率超声波 电源 高精度、高功率输出的特点.对超声波电源控制策略进行了改进。提出一种基于56F803型DSP的频率跟踪与功率调节相结合的周期分段移相控制策略.研究了基于此控制方法的超声波电源。    1 引言 随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。现在的大功率超声波电源大都采用频率跟踪控制或功率控制。这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的理论研究和实际应用价值。 2 超声波电源系统的组
[电源管理]
大功率超声波<font color='red'>电源</font>的研究
基于KA3525的不对称半桥式功率变换器的数控开关电源的实现
1、前 言 现实的生活和实验中,常常要用到各种各样的电源,电压要求多样。如何设计一个电压稳定,输出电压精度高,并且调节范围大的电压源,成了电子技术应用的热点。在市面上,各种电源产品各式各样,有可调节的和固定的。但是普遍存在一些问题,如转换效率低,功耗大,输出精度不高,可调节范围过小,不能满足特定电压的要求,输出不够稳定,纹波电流过大,并且普遍采用可调电阻器调节,操作难度大,易磨损老化。 针对以上问题,本文采用基于KA3525 PWM控制芯片的不对称半桥式功率变换器,并采用16位凌阳单片机作为数控核心,通过其内置的D/A输出调制PWM,提高了电源的输出精度和效率,并且方便使用者操作,实现了基于单片机的数控开关电源。
[单片机]
基于KA3525的不对称半桥式功率变换器的数控开关<font color='red'>电源</font>的实现
电源测试:稳定性测量
作者:Bob Hanrahan 德州仪器   此前,我已经发表了有关如何测试电源设计的三篇文章中的前两篇,即效率测量(第 1 篇)和噪声测量(第 2 篇)。文章主要涵盖各种噪声源以及如何使用示波器正确测量噪声。此外,我还讨论了由线路及负载瞬态产生的输出错误问题。 今天,我要谈谈电源测试的第三个也是最后一个指标:稳定性测量。 电源属于闭环放大器,负责吸收电能并将其转换成具有特定稳压和/或电流的另一种电能形式。电源的稳压原理是传感输出并将输出的一部分与参考电压相比较。将传感信号与参考信号的差值进行放大,然后用于控制稳压器的功率级,以保持电压(或电流)恒定。( 图  1 )。   电源采用从输出回到误差放大器的负反馈确保其在各种工作条件
[电源管理]
<font color='red'>电源</font>测试:稳定性测量
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved