新型检测户外全彩LED显示屏的方法

最新更新时间:2011-09-06来源: 中国LED网关键字:全彩  LED  显示屏 手机看文章 扫描二维码
随时随地手机看文章

    led(LightEmittingDiode,发光二极管)是当今世界发展最为快速的产业之一。LED高亮度、低能耗、长寿命的特点使得LED显示屏在户外平板显示领域优势明显。但是,LED间存在的光、电学特性差异通常会引起LED显示屏亮度、色度不一致,进而破坏显示屏的白平衡,降低显示品质,严重时还会造成花屏、马赛克等问题。在解决这一问题时,以往的研究主要集中在单个LED的光电学特性差异上面,目的在于找到RGB(红、绿、蓝)三基色LED合适的补偿曲线以修正其驱动控制参数来改善显示效果。这类检测和校正方案能较好解决花屏、马赛克等严重问题。可是,即便是同一基色、同一批次的LED间也存在特性差异,且LED全彩显示屏包含的LED像素点多,在生产、制造的过程中都难免会出现各种问题,将导致某个LED像素点不亮,或产生亮度、色度差。所以,这类检测方案对单个LED像素点的校正效果较差,显示效果改善有限。作为补偿方案,人工目测也只能检测出个别差异明显的LED像素点,且对检测人员的调试经验要求较高;同时,LED的高亮度也加大了检测人员的工作强度,致使检测效率低。

  因此,本文从户外全彩LED显示屏整体着手,运用数字图像处理的方法对显示屏上的每个LED像素点进行快速检测,目的在于提高检测速度和准确度,从而改善户外全彩LED显示屏的显示效果。

  1 检测原理

  如图1所示,计算机通过图像采集/控制模块将CCD(ChargeCoupledDevices,电荷耦合器件)传感器采集到的LED显示屏的显示图像进行处理。处理过程主要包括LED像素点的定位和亮度、色度的快速检测两部分。

  1.1 LED像素点的定位

  要确定LED像素点的位置,首先要对采集的LED显示屏图像进行二值化。由基于直方图的图像阈值分割方法可以知道:图像由可以分离的具有不同灰度等级的一种或多种物体和背景组成。根据这一原理,图像的直方图中将会呈现多个峰值,每个峰值对应一种物体或是背景,要将不同的物体分离开,可以以谷值点为阈值来划分相邻峰值。

  由于LED显示屏的点阵特性,实际检测中发现采集的图像(如图2(a)其灰度直方图(如图2(b))双峰分布特征十分明显。对于这类情况,采用式(1)的最大方差阈值法来自动选择分割阈值,不仅效果好,而且速度快。

检测系统组成原理图

图1 检测系统组成原理图

  式中T表示分割阈值,w0、w1分别表示灰度值小于T、大于T的像素点在图像中所占的比重, 0、1分别表示图像整体的灰度平均值、灰度值小于T的那部分图像的灰度平均值、灰度值大于T的那部分图像的灰度平均值。

  利用式(1)计算出的阈值T对图2(a)的灰度图像进行二值化处理后得到图2(c),再对图2(c)分别进行水平和垂直投影,就可以计算出LED像素点在显示屏上的位置。

定位处理结果

2(a)采集的蓝色图像 2(b)灰度直方 2(c)二值化图像

图2 定位处理结果

    1.2 LED像素点亮度、色度的快速检测

  借鉴成功用于PAL(PhaseAlternatingLine,逐行倒相制)制式的电视系统中的YUV颜色模型(Y表示亮度,U和V是构成彩色的两个分量),将图像中采用的RGB颜色模型转换成式(2)的颜色模型,可以方便、快捷地计算出各像素点的相对亮度值。

  根据色度学中的加色法原理,户外全彩LED显示屏由RGB三基色LED构成显示屏上的每个像素点,通过控制每个像素点中的某基色LED的发光强度,就可以配出各种颜色,在显示屏上显示出丰富多彩的彩色图像。在CIE(国际照明委员会)rg色度图中,色度坐标反映的是三基色各自在三刺激值总量中的相对比例,一组色度坐标表示了色相相同和饱和度相同而亮度不同的那些颜色的共同特征。

  而LED显示屏上的每个像素点总是能在待测图像中找到对应的区域。因此,可通过其对应区域内图像数据中的RGB值来确定该像素点的色度,其计算公式如式(3)。

  设测得的LED像素点的亮度值为Y1,色度坐标为(r1,g1),分析Y1、(ri,g1)的离散性,就能确定LED显示屏上亮度和色度不一致的LED像素点。

  为验证检测方法的有效性, 本文用AvaSpec-2048微型光谱仪对同一户外全彩LED显示屏的单元模块进行了亮度和色度的对比测试。为减小计算量和方便调试, 本文采用了CIErg色度坐标系,这与光谱仪采用的国际通用的CIExy色度坐标系不同。因此,测试时要对色度坐标进行转换,如式(4)所示。

  2 处理结果及分析

  本文利用CCD图像传感器采集图像,对三合一表贴户外全彩LED显示屏的单元模块中的LED像素点进行了算法测试。

  以蓝色为例,图2(a)为CCD图像传感器采集的三合一表贴单元模块显示的蓝色图像。为更好地验证该检测方法的有效性, 本文对该LED显示单元模块的某些像素点进行了遮蔽处理,形成了图2(a)中的黑色部分。

麦克亚当颜色宽容量椭圆图

图3 麦克亚当颜色宽容量椭圆图

  由于LED是自发光体,并且发光强度在一定范围内与提供给它的驱动电流成正比,因此在驱动电路的设计、制造和调试过程中,通过合理控制驱动电流,可以尽量减小亮度差,以平均值作为标准值来计算,应小于15%至20%。因此,为方便后续的亮度校正,实验对偏离整体亮度平均值5%以上的LED像素点进行定位和统计,以求将这些偏离较大的像素点的亮度差值控制在10%以内。在进行色度检测时,本文参照麦克亚当(D.L.MacAdam)对颜色宽容度进行量化的方法(如图3),对各LED像素点的色度坐标进行了统计,求出这些色度坐标的几何中心,并记录下与该几何中心的欧式距离大于d0的LED像素点3-5%(不同颜色d0取值不同),如式(5)。

  表1为检测结果(以蓝色为例),其中亮度值Y1为相对亮度,正比于最大亮度255;色度坐标为(r1,g1)。

表1 检测结果统计表(蓝色)

检测结果统计表(蓝色)

  用AvaSpec-2048微型光谱仪对同一单元模块进行了对比测试,其测试结果如表2所示。对比可知,本文采用的检测方法是有效、可行的,且检测速度快、精度高。

表2 AvaSpec-2048微型光谱仪测试结果(蓝色)

AvaSpec-2048微型光谱仪测试结果(蓝色)

  3 结语

  本文运用CCD图像传感器及数字图像处理技术对户外全彩LED显示屏的亮度、色度均匀性评价提出了一种新的快速检测方法,较好地保证了显示屏上各LED像素点显示效果的一致性,为后续的亮度、色度校正工作提供了定量调试的参考依据,能大大提高户外全彩LED显示屏的检测效率和显示质量。下一步将继续开展环境光对亮度、色度检测的影响及克服方法,以及亮度、色度自动校正驱动电路的研究,最后实现对户外全彩显示屏上每个LED像素点的亮度、色度值的精确检测和校正。

关键字:全彩  LED  显示屏 编辑:探路者 引用地址:新型检测户外全彩LED显示屏的方法

上一篇:高亮度LED生产环节的全方位测试
下一篇:提升白光LED发光效率的四大关键

推荐阅读最新更新时间:2023-10-18 15:39

LED新应用带动封装基板新革命
前言: LED自发明以来,时至今日,已深入生活各个角落,因LED本身各方面优势,使传统发光元件正逐一被LED所取代,目前市场正积极导入室内用照明区块。 本文: LED,从早期传统的砲弹封装,发展到现在的平板型封装,已经历多年演化,运用在传统的电子零组件或最新型显示器,LED俨然是个不可或缺的角色。LED基本发光原理是利用电子能阶迁移,释放出能量、产生光,最简单的构造是将发光层夹于正负极,导电透过电子能阶让发光层发量。 图说:传统型态与新形态各异,使用的层面也不同。(资料来源:http://www.liteon.com/) 图说:在阳极与阴极施加直流电时,电子(+)和电洞(-)便会在发光层开始
[嵌入式]
设计基于LED的视频显示板设计
粗略估计,全球已安装的大型LED视频显示板已经达到数万台。随着整体系统价格的下降,显示板操作流程的简化,LED视频显示板必将得到进一步普及。本文介绍一种基本的低成本LED视频显示模块。这一新型设计利用廉价的FPGA芯片完成数字视频比特流的分配,由MAX6974 LED驱动器构成QVGA(320×240)分辨率的LED视频显示器。该显示板可通过PC控制,用作辅助监视器显示任意文本、图表或多媒体信息。 1 目前LED显示卡架构 目前,所有顶级LED视频显示板厂商都在使用色彩像素尺寸不同但结构类似的LED视频显示屏。视频显示模块像素大约在256~15 552范围内。将视频显示模块拼接在一起可以构成边长达到数米的视频墙
[工业控制]
基于LM3445可控硅调光器的离线式LED驱动器
引言 基于控制器IC的 可调光 LED驱动器 通常采用的调光方式有两种,即数字PWM调光和模拟DC电压调光。基于相位控制的TRIAC传统白炽灯和卤素灯调光器若用于LED的调光控制,会产生100Hz或120Hz的闪烁,而且调光范围非常窄。最近美国国家半导体(NS)公司推出一种带有TRIAC调光译码器的离线式AC/DC降压(buck)恒流LED控制器LM3445,允许利用标准TRIAC调光器对LED进行宽范围的平稳无闪烁调光,打破了传统 TRIAC调光器应用与LED节能照明的一个瓶颈。 LM3445的主要特点 LM3445与先前的同类离线式AC/DC降压恒流LED驱动器IC比较,其主要特点是在芯片上设计了TRIAC调光译码
[电源管理]
基于LM3445可控硅调光器的离线式<font color='red'>LED</font>驱动器
光伏产业增速将降 中国企业遇多重挑战
       “我对未来光伏行业发展有一些担心,”光伏组件厂商天合光能(TSL.NYSE)董事长兼CEO高纪凡,近日在“2011国际太阳能产业及光伏工程(上海)展览会”的论坛上以此作为了开场白,“2006年全球光伏安装量是1.8G瓦,2010年为15G瓦~16G瓦,增长了约8倍。据行业预测,到2015年光伏全球的安装量为35G瓦。也就是说,未来每年光伏安装量增幅估计为20%~25%.与之前每年2倍的行业增速相比,将大大降低。”   与高纪凡持相似观点的光伏行业人士还有不少,CSI阿特斯太阳能董事长兼CEO瞿晓铧就认为,光伏行业增速降低是大势所趋,这主要是因为多晶硅等原材料成本趋于平稳,且欧洲各国对电价的补贴政策基本可以预见,大起大落
[电源管理]
75W反激式LED驱动电源电路解析
本文介绍一种带单级(单开关)PFC的反激式恒压,恒流75WLED驱动电源,其电路如图,AC输入电压范围为208~277V,输出24V、3.125A,用来驱动75W的LED阵列灯。 TOP250YN是PI公司推出的一种TOPSwitch-GX离线式开关,采用7脚T0-220-7C封装,内置PWM控制和保护电路及700V的功率MOSFET. 利用单级反激式变换器实现高功率因数的方法是单个AC周期内保持UI中MOSFET的开关占空比因数保持恒定,这就要求流入Ul控制端(引脚C)的电流不变,方法是增加电容c5的电容量。在UI引脚C与U2B之间加入一级射极跟随器Q1,井在其基极连接电容CIO.从Ql发射极看,若Q1电流增益是hFE
[电源管理]
75W反激式<font color='red'>LED</font>驱动电源电路解析
AllGo多显示屏方案 提供个性化车载多媒体内容
据外媒报道,作为车载信息娱乐方案的全球领导者,AllGo推出了一款多显示屏方案,使车载信息娱乐(IVI)的用户们得以从不同显示屏中获取其个性化内容。 自动驾驶的到来将为消费者提供多种不同的服务,可实现其与车载系统的交互。多显示屏是构成这类交互的核心组件。 这类显示屏可连接到车载固定式设备汇总,或与用户带入的自带设备(BYODs)相连接,如:iPads与安卓平板。为实现这类交互,需要利用中控单元(centralized unit)来分为各个显示屏的内容。内容或许包括音频、视频或交互式人机界面(HMI)等多种类型。 AllGo System首席执行官K. Srinivasan表示:“自动驾驶汽车的到来将促使驾驶员有更多的时间去享受
[汽车电子]
采用电感升压开关型变换器的LED驱动电路简介
一、基本电路拓扑与工作原理 基于电感升压开关型变换器的LED驱动电路广泛应用于电池供电的消费类便携电子设备的背光照明中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率开关MOSFET( VT1)、控制电路、升压二极管(VD1 )和输出电容器(C0)组成,如图1(a )所示。 图1电感升压变换器基本电路及其工作原理图 在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。 当控制器驱动VT1 导通时,VD1截止,L1中的电流不能突变,只能从零开始缓慢线
[电源管理]
采用电感升压开关型变换器的<font color='red'>LED</font>驱动电路简介
60V 同步降压-升压型 LED 驱动器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2012 年 3 月 13 日 – 凌力尔特公司 (Linear Technology Corporation) 推出同步降压-升压型 DC/DC LED 驱动器和电压控制器 LT3791,该器件可提供超过 100W 的 LED 功率。其 4.7V 至 60V 的输入电压范围使该器件非常适用于种类繁多的应用,包括汽车、工业和建筑照明。类似地,其输出电压可设定在 0V 至 60V,从而使 LT3791 能驱动多种配置的单串 LED。其内部的 4 开关降压-升压型控制器以高于、低于或等于输出电压的输入电压工作,非常适用于汽车等应用,而在这类应用中,输入电压在停止 / 启动、冷车
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved