手电筒电池的1.5伏升压到LED所需的3.5伏

最新更新时间:2011-09-21来源: 21ic关键字:手电筒电池  升压  LED 手机看文章 扫描二维码
随时随地手机看文章

这里描述的电源把电压从一节手电筒电池的1.5伏提高到LED所需的3.5伏,同时用电源把LED和手电筒电池串联起来。设计这种电路是为了用LED对手电筒进行改进。增压电路在有两节电池的手电筒中将代替的一节电池,LED装置则代替白炽灯(见图1)。

结果是,仅用一节手电筒电池,LED手电筒就可以用很长时间。该设计最大的难点是:当电源只有一端与电池相连而另一端与白炽灯相连时,提高电压。

图2所示的电源电路要靠一个窍门来工作。在LED装置中,有一个与LED相连的二极管,以便当电源吸收电流时,电流也通过该二极管。在这期间,LED是反向偏置的。经过一段很短的时间,电源停止吸收电流而转向供电,这样LED处于正向偏置状态。

“工作部分”是一个间歇振荡器,这个振荡器采用两个晶体管而不是通常的一个晶体管。当晶体管导电时,PNP型晶体管将电感的一端与电源正极相连,NPN型晶体管将电感的另一端与电源负极相连。电流一直在电感中积累直到一个晶体管饱和为止。基极电压的翻转使得两个晶体管迅速截止。

当两个晶体管截止,以及电感线圈中的电压随着电流流过电感而反向之后,电感通过二极管D1和D2释放电流。结果,原是正极的一端现在通过D2与电池负极相连,使得电感发生翻转。另外,原是负极的一端通过D1与电池正极相连。当电路振荡时,电感不断地在这两种连接状况(电流通过晶体管积累以及通过D1和D2释放)中变化。

LED装置代替白炽灯
4.7千欧的电阻可以地与LED并联而稍微降低导通启电压。在原来的设计中,导通电压从大约1.3伏降到小于1.1伏。这是很有意义的,因为一节新的碱性手电筒电池放电到1.1伏所需时间很可能就是其放电到1.3伏所需时间的两倍。

与2N4401相连的100千欧电阻是用来保证总有足够的漏极电流而使晶体管导通,从而启动振荡器。电感是用连续#32单股磁性金属线在铁氧体软磁性材料TC8.2/3.7/4-3E7环形磁心上绕45匝制成的。在15和30匝处分别有抽头,这样构成每部分15匝的三个部分。振荡频率在1.6伏电池电压时是17kHz。

电源电路要靠一个窍门来工作

关键字:手电筒电池  升压  LED 编辑:探路者 引用地址:手电筒电池的1.5伏升压到LED所需的3.5伏

上一篇:5个灯的LED闪光灯驱动器电路
下一篇:浅谈LED太阳能灯技术原理

推荐阅读最新更新时间:2023-10-18 15:47

LED隧道照明工程技术指标分析
前言:隧道应用新型光源的节能研究受到了业界关注,其中led隧道灯的节能研究已经有重大进展。因为根据明视觉与中间视觉理论、显色性与照度关系等科研成果,LED应用于隧道照明具有先天优势,所以在国内已经有多项重要隧道照明工程使用了LED隧道灯。LED隧道灯具在隧道照明工程中的应用已经取得突破性进展,但是仍然存在问题,例如没有专门针对以LED为光源的隧道灯具的设计与施工规范、产品性能参差不齐等。 本文将就LED隧道照明工程中需要注意的重点技术指标做分析,期望能为设计单位以及用户提供参考。 光学部分LED光效 LED单瓦流明输出是决定LED隧道灯是否具有实用价值的基本指标,根据LED隧道灯的实际使用中的要求
[电源管理]
LED偏光板的发展方向
  因LED背光LCDTV及3DTV等高阶TV产品成功进入市场,直接影响面板光学特性的偏光板市场,亦随此趋势衍生许多相关议题。据市场调查机构Displaybank的调查显示,随偏光板产品朝高规格化发展,偏光板产品的种类也呈现多样化,厂商在偏光板的技术研发及投资活动亦非常活跃。   由于偏光板属位于面板结构最上层的材料,为了减少面板表面的反射及散光现象,业界对偏光板的表面处理有着多样且不同的要求。一般而言,大部分的偏光板表面会使用AG(AnitGlare)处理方式达到降低反射率的效果,但使用LR(LowReflection)方式的偏光板产品会呈现较高质感的处理效果,因此近期经过LR处理的偏光板的需求正持续增加;经调查结果显示,目前整体
[电源管理]
数字控制LED 点亮生活新色彩
现代化的城市流光溢彩。社区沐浴在钠离子街灯的橙色光芒下。汽车头尾灯交相辉映,将公路化作一条光河,整个市区笼罩在摩天大楼精妙的色调中。顶级的音乐会使用灯光来变换舞台。建筑物采用多彩灯光增添吸引力,甚至水池也利用变色灯光来营造气氛。   电子发光设备无处不在,能够投射任意颜色的灯饰也越来越普遍。LED引领着变色灯饰向更高效、更易于获取及成本更低的方向发展。借助LED,设计人员找到了效率、混色调光功能以及长使用寿命的独特组合。采用数字信号控制器(DSC)可对LED进行数字控制,这使得灯饰兼有智能和与外界通信的能力。设计人员可以利用这些功能自由发挥,在LED灯饰中实现各种创新和令人兴奋的功能。   大多数工程师非常熟悉典型的低
[模拟电子]
数字控制<font color='red'>LED</font> 点亮生活新色彩
大功率LED路灯的光生物安全测试与分析
引言 随着LED 技术的不断进步,LED 功效不断增大,亮度不断提高,过去LED 出射光不会对人体造成危害的时代已经一去不复返,欧洲、北美等发达国家和地区都开始密切关注LED 产品的光生物安全性问题,并着手制定了一系列标准。但是,目前国内对于LED 光生物安全测试技术的研究仍然非常薄弱,相关的测试系统与方法研究论文更是少之又少。 本文对一款目前LED 照明中被大量采用的大功率LED 路灯进行光生物安全性检测。首先对辐射照度、辐射亮度、表观光源作了测试,最后对检测结果的危害类型进行分析和归类。基于普通照明用LED 光源不会产生800nm 以上的红外部分光谱,本实验只针对200nm ~ 800nm 部分光谱范围进行测试。
[电源管理]
大功率<font color='red'>LED</font>路灯的光生物安全测试与分析
LED前照灯发展趋势一:降低耗电和组合多个部件配光
   使用LED(发光二极管)前照灯的车型在不断增加。自从丰田在2007年5月上市的“雷克萨斯LS600h”上率先导入之后,LED前照灯的采用范围开始在混合动力车型上扩展,三菱汽车也决定在电动汽车上配备。今后,随着成本的降低以及单个LED元件的亮度得到提高,2014年以后有望开始全面普及。 照片由奥迪公司提供   在2010年1月举行的底特律车展上,首次面向公众亮相的奥迪最高档车型新款“A8”成为大放异彩的车型之一(见上图)。该车继奥迪跑车“R8”之后,将包括近光灯及远光灯在内的所有光源全部LED化的LED前照灯设定为了选配项。   以前奥迪公司也曾积极在DR
[汽车电子]
<font color='red'>LED</font>前照灯发展趋势一:降低耗电和组合多个部件配光
LED背光显示器与传统CCFL背光效果图文对比
   LED背光 显示 器现在成了行业中备受瞩目焦点,各品牌纷纷推出新品,即使没有新品上市也都迫不及待的公布了推新的计划,一时间从媒体到消费者都把目光汇集到了LED背光显示器上,而对于LED背光显示器跟传统的 CCFL 背光显示比起来究竟有哪些优势,我们可以简单分析下。    液晶 显示器的主要成本就是 液晶面板 和背光源两部分,大家都知道,液晶面板本身是不能发光的,这就需要所有的 LCD 都有背光照明,一直以来液晶显示器的背光源主要是采用CCFL背光 (冷阴极荧光灯),目前市面上的大多数产品都是这样的设计,而LED背光的出现为什么会一石激起千层浪呢,这就是因为两种背光源对比后有明显的差异,LED背光的优势凸显出来,也成为未来产品
[电源管理]
<font color='red'>LED</font>背光显示器与传统CCFL背光效果图文对比
背光模块成本高 LED NB渗透率不如预期
  2008年LED NB渗透率不如预期,根据LEDinside估计,2008年LED NB渗透率仅10%左右。影响LED NB渗透率最大的问题仍在于LED背光模块成本偏高。LED背光模块与相比于CCFL背光模块价格差距仍高达70%,而亮度与专利问题是LED背光模块价格居高不下的原因。   低价计算机的崛起,迅速拉低NB厂商平均出货单价,因此各家厂商莫不绞尽脑汁的希望将产品差异化,因此可使NB轻薄、省电的LED背光技术就成为各大NB品牌厂商的首选。在NB品牌大厂纷纷加速导入LED背光的趋势下。LEDinside预计2010年LED NB渗透率将会高达60.3%。   LEDinside表示,至今年第三季为止,用于NB上
[焦点新闻]
利用升压转换器延长电池使用寿命
器件的静态电流 (IQ) 对于连续血糖监测器 (CGM) 等低功耗节能终端设备而言,是一个重要参数。集成电路在轻负载或空载条件下消耗的电流会显著影响待机模式下的功率损失,以及系统的总运行时间。 由电池供电的负载实际上并不是常开型负载,而是脉宽调制 (PWM) 负载,这意味着负载包含两个时间段:tPWM 和 tStandby,如图 1 所示。尽管 tStandby 占总负载周期(在图 1 中显示为 T)的 99.9%,但它对提升效率(尤其是轻负载效率)仍非常重要。 图 1:电池系统负载情况 为了提升效率和延长电池使用寿命,人们面临着降低待机模式功率损失、限制电流尖峰和减小导通时间脉冲期间占空比的诸多挑战。具有低 IQ
[电源管理]
利用<font color='red'>升压</font>转换器延长<font color='red'>电池</font>使用寿命
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved