LM3424是美国国家半导体推出的具有温度管理与控制功能的一款新品LED驱动器,该驱动器可驱动多达18颗串联的高亮度LED,适用于多种不同的室内/户外照明系统以及汽车照明应用。在典型的应用情况下,LM3424可输出2 A以上的驱动电流,并可为降压、升压、SEPIC、反激及升/降压拓扑等各类应用提供稳压电流,可适用于4.5~75 V的较宽输入电压范围,而且其内置的PWM控制器可支持高速操作。
1 引脚功能
LM3424采用散热能力更强的20引脚TSSOP封装形式,其引脚排列如图1所示。各引脚的功能说明如表1所列。
2 工作原理
2.1 平均工作电流
为了更好地理解LM3424的平均电流ILED,可先忽略热能回折电路的影响,在图2所示的LED电流检测电路中,热能回折电路可等效为一
个电流为零的恒流源(ITF=0A)。LM3424使用外接的电流检测电阻(RSNS)串接在LED电路中,它可将LED电流(ILED)转换为电压(VSNS)。引脚HSP和HSN是检测放大器的两个输入端。由运放知识可知,该电路的两引脚的电位相等(VHSP=VHSN),因此,检测电阻上的电压VSNS即为电阻RHSP上的电压,因此,若ITF=0A,则有:
而用误差放大器可将CSH端的电压控制在恒为1.24V,所以,该电压VSNS的值为:
式中的三个电阻RSNS,RCSH和RHSP并不是任意的,为匹配和减小噪声,建议将电流ICSH设定为100 μA左右。由于这个电流不流经LED,所以并不对LED截止电流和LED电流的调节产生影响。ICSH的值可以大于或小于100μA,但这样会对检测放大器的补偿特性产生一些影响。另外,为尽量减小对检测放大器电压偏移的影响,VSNS的极小值建议取50 mV。
2.2 热能回折(Thermal Foldback)电路
热能回折电路在许多应用中都是很必要的,由于受到实际工作环境的影响,LED的内部温度可能会飙升至极高的水平。而热能回折电路可以监控系统热能,以免温度失控。其电路的热能回折原理特性如图3所示,图中,TBK为温度阈值点,当LED温度高于该值时,即进入非安全区,LED的寿命及照明效果便会受到影响。而这时,由于LED电流ILED也开始随之减小,减少的电流会使LED的亮度随之下降,但仍然保持在预设范围内,直至操作温度恢复到安全的操作范围内。事实上,采用LM3424芯片可为照明系统的LED设置温度及斜坡断点,从而确保LED停留在安全区内操作。
图2所示的热能回折电路可通过添加到LM3424器件CSH端的电流ITF来实现。当ITF电流增大时,检测放大器的输出电流会相应减小,以使
LED的电流控制在一个较低的值。当ITF=ICSH时,其可到达温度最高点TEND,这时,ILED=0A。
下面分析该电路的具体控制过程。
ITF的大小是由差分电压VDIF决定的(VDIF=VTREF-VTSENSE),其中VTREF可由RREF1和RREF2分压得到(典型值为2.45 V)。VTSENSE则可由一个NTC电阻得到,由图2可知,若VDIF<0 V,则检测温度小于TBK,差分检测放大器的输出ITF=0,即没有反馈。而检测温度等于TBK时,VDIF =0 V,ITF=0。这时,温度阈值为TBK时的NTC电阻值可由下式得到:
通常可设置RREF1=RREF2,从而有RBIAS=RNTC-BK。若VDIF>0 V(温度高于TBK),则运算放大器的输出电压值与VDIF相等,所以,RGAIN上的电流(由恒流源的知识可知其与ITF相等)会随着温度的上升而改变,即,ITF为:
热能回折电路也可看成是一种模拟调光,只要想办法控制引脚TREF和TSENSE之间的差分电压,就能改变LED的电流,从而实现模拟调光。VDIF>0 V时的LED电流可由下式得到:
3 典型工作电路及元器件选择设计
由于LM34242芯片可为buck、boost、SEPIC和buck-boost拓扑的各类应用提供稳压电流,本文仅给出boost时典型应用电路,并以它为例介绍主要元件的选取设计。图4所示是其典型应用电路。
3.1 电感L1的选择
L1是开关调整的主要能量存储器件,不同的拓扑电路中,能量从电感传输到负载的方式不同。电感上的纹波电流(△iL-PP)主要由电感量、通过电感的电压和开关频率决定。在设计过程中,L1需要根据得到的△iL-PP来进行选择。对于buck调节器,由于电感是直接与负载连接,而不需要接输出电容,因此,△iL-PP基本与LED的纹波电流△iLED-PP)相等。boost和buck-boost调节器应当接有输出电容,以用于减少△iLED-PP,因此,该电感的可允许纹波要比buck调节器大一些。通常△iLED-PP要小于ILED值的40%。由于buck调节器没有输出电容,所以,△iL-PP应小于ILED的40%。而对于boost和buck-boost等拓扑电路,由于有输出电容可以补偿,△iL-PP可以大一些。但是,一般建议△iL-PP要小于平均电感电路的一半,以限制电感的输出功率。所以boost和buck-boost调节器中的电感取值为:
3.2 LED动态电阻
当负载为一串LED时,其输出负载电阻是LED串的动态电阻加上RSNS。由于LED是半导体二极管,所以,当通过的电流变化时,其阻值也会漂移。若只是通过二极管的正向电压除以正向电流得到动态电阻,则该值是不正确的。其结果可能大于实际值的5~10倍。这一点在设计时必须要考虑。
3.3 输出电容
对于boost和buck-boost调节器来说,输出电容(CO)可为负载提供能量。当续流二极管D1反向截止时,在buck中,输出电容仅仅是减少LED纹波电流(△iLED-PP),以使其低于电感的纹波电流(△iL-PP)。在所有电路结构中,适当的C0的大小能提供一个合适的△iLED-PP。由于△iLED-PP要小于LED平均电流(ILED-PP)的40%。所以,C0应仔细选取,因为它会影响到工作温度和工作电压。一般情况下,磁片电容是理想的选择。对于boost调节器,C0的取值是:
其中,rD=NrLED,N是串联LED的数目,rLED是单个LED的动态电阻。
3.4 输入电容
输入电容(CIN)可在开关状态的间断期间提供能量。对于buck和buck-boost,CIN在tON和tOFF时间都提供能量,而输入电压源则以平均电流(IIN)给输入电容充电。大多数应用中都需要在输入引脚VIN处放置一个0.1μF的陶瓷电容,而且它要尽可能的靠近输入引脚。在某些情况下,大容量的输入电容可能远离LM3424,但应在大容量输入电容和旁路电容之间放置一个10Ω的串联电阻,从而构成一个150 kHz滤波器,以滤除不希望的频率噪声。boost调节器时,CIN的取值为:
3.5 主MOSFET/调光MOSFET
LM3424需外接NFET(Q1)作为主MOSFET以构成开关调节器。Q1的额定电压至少应高于电路最大工作电压的15%才能保证正常工作。当PWM
调光时,LM3424还需要另一个MOSFET(Q2),且它应串联在LED上(在buck中是并联)。该MOSFET的额定电压可与输出电压(Vo)相等,额定电流至少要高于(ILED)10%。由于续流二极管(D1)在toFF时承载着电感上的电流,因此,D1通常应选肖特基二极管。
4 结束语
本文介绍了具有温度管理控制功能的LED驱动器LM3424的主要功能和应用电路的设计方法。同时介绍了其具有的热能回折功能、原理和应用。最后以boost典型应用电路为例,给出了LM3424主要外围元件的选取方法。
上一篇:低功耗投影仪的RGB LED驱动器参考设计
下一篇:基于FPGA的LED大屏幕控制系统设计
推荐阅读最新更新时间:2023-10-18 15:50
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET