正是所谓的有机发光二极体,其最大特色在于它是自发光体,因此不需要背光源( Backlight )及彩色滤光片( Color Filter )等构造,因此能够比 LCD 的厚度更薄。此外,更宽广的视角、反应速度快、低驱动电压、色彩与对比也相对比 LCD 高、理论上可达到更低耗电以 及制程更简单等优势,让 OLED 成为继 LCD 后最被看好的显示技术明星。但 OLED 也寿命比 LCD 短的缺点,这是因为 OLED 是电流驱动的自发光体,因此其材料与原件的寿命相对的缩短。
OLED 的电源规格需求
一般小尺寸的 OLED 的电源,需一组正电压( Vdd )输出,与一组负电压( Vss )输入,而电源的架构,可分为数位相机与手机的架构两种。数位相机的电源规格其 Vdd 电压范围 为 3V 至 6V ,而 Vss 电压范围为 -7V 至 -10V 。手机的电源规格其 Vdd 电压范围大约为 2.5V ,而 Vss 电压范围为 -7V 至 -10V 。而这两种产品 的输入电源通常为一颗锂电池,所以电压范围大约为 3V 至 4.2V 。
数位相机 Vdd 的解决办法
由于数位相机的 Vdd 电压范围为 3V 至 6V ,所以 Vdd 电源架构应该是 Buck/Boost 或是 Boost 的架构。如果一时找不到 Buck/Boost 架构的电源输出,也可利用非常普遍的 Buck 架构来设计成 Buck/Boost 架构。只要利用一组普通的降压电源控制 IC ,外加一 MOSFET 及一输出二极体便能设计成 Buck/Boost 输出,如图 1 所示。这个稳压器的工作原理是当 Lx 为高电压时,电感电流随 Vin/L 的斜率而增 加。而 Lx 为低电压时,电感电流便随( Vout+VD ) /L 的斜率而减少。输入和输出的电流为断续的方式,它允许输出电压比输入电压更大或者更小。其输出 电压是输入电压和周期功率的函数:
此主题相关图片如下:
以及周期功率算式为:
此主题相关图片如下:
此主题相关图片如下:
图 1 利用降压电源 IC 设计成升降压型
从 上述的式子可得知输出电压与输入电压和周期的关系,想得到较高或较低的输出电压只要控制 1/1-D 的比值大小即可。设计者也可以直接使用一组 Buck/Boost 电源 IC ,来产生所需的电压输出,如图 2 便是一组直接昇降压的 IC 。其结合一组升压转换器与线性稳压器来提供可升压也可降压的电压转 换器。这个转换器为输出电压以下和超出的输入提供一个稳定的输出电压。它可从 1.8V 到 11V 输入范围和预置 3.3V 或者 5V 的输出。也能够把这个输出电 压使用两个电阻分压从 1.25V 至 5.5V ,其效率大致上可高达 85% 。如果需要的输出电压是在 3.5V 至 4V 之间,可以用组合的方式来产生一组升降压的 输出,设计者只需要一组升压转换器与一组线性稳压器便行,例如 MAX1606 升压转换器与 MAX8512 线性稳压器的组合。
此主题相关图片如下:
图 2 升降压型电源 IC
如 果因为成本的考量,那 Charge-Pump 的架构正适合低成本的解决方案,其架构可省一电感与一输出二极体,例如 MAX1759 是以 Charge-Pump 方式产生一组可升降压的输出电压。而 Maxim 的独特 Change-Pump 架构容许输入电压可高于或低于输出电压。尽管它的工作 频率高于 1.5MHz ,一样保持低至 50uA 的静态供应电流。
有 些设计者因为考虑到高效率,而选择以升压方式产生一组输入高于输出电压来提高效率,如图 3 的升压架构,由于需外加 MOSFET 作切换开关,因此可 提供较大的输出功率。如果是因为空间的限制,外加 MOSFET 开关以及输出二极体就会成为设计者的负担,此时内建 MOSFET 切换开关与输出二极体的升压 DC-DC 转换器例如 MAX1722 ,就适合于此应用中,不仅省空间、效能好,更能省成本。
此主题相关图片如下:
图 3 升压型电源转换器
手机 Vdd 的解决办法
因 此选择以 Buck 方式提供 Vdd 所需的电压。如图 4 便是一组内建 MOSFET 切换开关的同步降压结构的直流转换器,可提供 400mA 的输出电流。而且工作频率高达 1.2MHz ,设计者可选用小尺寸的电感,与输出电容,效率同样高达 90% 以上。
此主题相关图片如下:
图 4 降压型电源转换器
负电压 Vss 的解决办法
介 绍 OLED 的正电压 Vdd 输出之后,接着介绍 OLED 的负电 Vss 输出。就如同前文所叙述,如果设计者临时找不到合适的负电压输出电源 IC ,亦可 使用 Buck 架构的电源 IC 。如图 5 以漂浮接地线架构来产生负电压 Vss ,其原理为:透过正常的输出,连接在供给电压地线上,迫使转换器的地线稳压而产生 一组负电压输出,如果需要不同的输出电压,只要以两颗电阻跨接输出电容。
上一篇:照明技术:LED/OLED将走向何方
下一篇:OLED技术的优势与不足
推荐阅读最新更新时间:2023-10-18 16:02
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况