液晶(LC)和液晶高分子(LCP)通常是指在一定温度范围内呈现介于固相和液相之间的中间相的有机化合物。在这中间相,它既具有液体又具有晶体的特性;其颜色和透明度可随外界条件(如温度,电场,磁场,吸附气体等)变化而变化。LC和LCP这些不寻常的性质已经在液晶显示材料(LCD)中得到了广泛的实际应用,是近十几年来高分子材料研究的热点。而热分析技术是通过测试材料随温度或时间而变化的物理和化学性能来对其进行表征的一系列技术。由此可见热分析技术是进行LC、LCP和LCD研究和质量控制必不可缺的基本手段之一,其应用也愈来愈广泛和深入。
DSC的应用
DSC是在程序控制温度下,测量输入到物质和参比物的热流差与温度(时间)关系的一种技术。由于DSC不仅能准确测定LC、LCP和LCD的相变温度、结晶温度、熔融温度和玻璃化转变温度;而且能定量地量热,测定各种热力学参数(如热焓熵和比热)和动力学参数,灵敏度高和工作温度可以很低,因此DSC在LC、LCP、LCD中的研制和生产中的应用是最宽的。
1.液晶的相变
由于LC、LCP、LCD具有复杂的中间相,其相变过程也很复杂,并且有些相变过程的热效应也很小,属于微弱的一级相变,因此对DSC的灵敏度和量热的准确性提出了很高的要求。否则有些相变过程就会因测量不到而被忽略。METTLER-TOLEDO公司的DSC822e结合了静态量热计量热准确和DSC技术少量快速的优点,采用独特的卡尔文热电堆热流传感器,具有比同类产品高得多的检测灵敏度和准确性(见图1,图中的液晶样品在冷却曲线上中间相的焓变和温度范围都很小,但经信号放大后能清晰可见),信号时间常数短,分峰能力强,噪声低。并且配合该公司的FP84热台偏光显微镜的使用是表征LC、LCP、LCD相变的最简单有效的方法。
图1
2.液晶的比热
比热是重要的热力学参数。同一物质不仅在不同的温度下有不同的比热,而且在不同的相态下的比热也各不相同,因此可通过液晶的比热测定来判别其相态变化和相变级数。
用传统DSC测量比热需要多次的实验,而具有调制式功能的DSC则可以接近恒温直接测量比热。METELER-TOLEDO的DSC822e中的ADSC功能软件就具有这一功能。
图23.LC LCP LCD中的成分检测
为了满足LC、LCP、LCD各种性能的要求,我们常常需要在研制和生产过程中采用共聚和共混的方法增加其它的聚合物。其共混物的成分可分别根据它们DSC中的熔融峰面积计算,因为在共混物中的每个成分各自保持自身的熔融特性(见图2)
对于共聚混合物的相容性和相分离,利用DSC测定不同条件下的共聚混合物的玻璃化转变温度是一种很简便的方法。其基本原理是:相容性好则呈现单一的玻璃化转变温度,相分离则显示出两个纯组分的玻璃化转变温度。
4.液晶的有序性,液晶结构与热稳定性之间的关系
从分子水平看液晶的中间相是有序的。中间相的有序范畴为105分子量级,各种中间相的有序性也各不相同。根据热力学的原理,高度无序的物质具有很高的熵值,相反,低熵值总是和有序程度高的物质联系在一起的,因此通过DSC测量液晶的相变热焓?H,并且计算相应的相变熵S,就可定性地反映出液晶分子件间作用力的大小和各种中间相的有序程度。
利用DSC所测定的液晶的热力学参数不仅可了解中间相的有序性,还可用于研究LC、LCP、LCD的结构与热稳定性之间的关系。
5.液晶态结晶动力学研究
DSC是研究液晶等温和非等温结晶动力学的必需的手段。等温结晶动力过程的动力学方程式可用Avrami-Erofeev方程:1-α=exp(-Atn)。其实验方法是采用响应速度快的DSC淬火至某一温度,并保持恒定,在这一恒定的温度下测定其结晶速率;或采用改变液晶态的退火温度和在同一温度改变退火时间的方法进行动力学研究。非等温结晶动力学则是采用不同的升温速率进行测定。
6.高压条件下的LC、LCP、LCD
由于液晶作为显示材料(LCD),在显示器件中有广阔的应用前景,因此对利用外力改变液晶中间相相变温度范围和高压对液晶的热力学性质的影响就显得尤为重要。我们利用梅特勒-托利多公司的(压力范围0.1~7Pa)在这一方面进行了一些有益的尝试(见图3)。
图3
TGA的应用
TGA是在程序控制温度下,测量物质质量与温度关系的一种技术。通过LC、LCP、LCD的热失重曲线,我们可得到如下信息:
1.LC、LCP、LCD热稳定性的评价
2.LC、LCP、LCD的热降解过程和机理
3.添加剂对L C、LCP、LCD热稳定性影响的测定
4.LC、LCP、LCD中挥发性物质的测定
TMA(DMA)的应用
TMA是在程序控制温度下,测量物质在非振动负荷下的形变与温度关系的一种技术。
DMA是在程序控制温度下,测量物质在振动负荷下的动态模量和阻尼与温度关系的一种技术。
1.LCD软化点的测定
2.LCD热膨胀系数(L E)的测定
3.LCP、LCD玻璃化温度的测定(DMA)
4.LCP、LCD储能模量和阻尼的测定(DMA)
上一篇:技术探究:LED驱动方案该如何选择?
下一篇:名词解释:AMOLED面板
推荐阅读最新更新时间:2023-10-18 16:52
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 追更有惊喜:解救被FSM折磨过的你,justd0解析LSM6DSOX有限状态机官方例程
- 走进TE物联网应用资料中心,免费下载行业趋势报告、技术干货,还有样品申请
- 有奖直播|高速总线PCIe5.0技术发展与测试分享
- 直播已结束【大唐恩智浦具有阻抗检测功能的新能源锂电芯电池管理方案】
- ADI & 世健 新基建系列第一期——工业以太网 答题赢好礼!
- Nexperia ESD 应用手册|读 ESD 干货答题赢好礼
- EEWorld有奖主题征文来了~现金奖励等你来拿!
- 1月22日下午14:00Mouser携手Maxim邀您观看有奖直播:深入浅出可穿戴健康监测
- 线下研讨会|MATLAB助力人工智能与电子产品的开发
- 【在线研讨会】ADI RadioVerse™技术与集成DPD算法的RF收发器AD9375