未来的世界相信是LED的世界,随着其发展,其必备配套LED驱动也是发展的必然,因此如何在LED驱动的设计中解决可能遇到的问题是各大设计厂商正视的问题。本文就LED驱动使用过程中碰到的五个问题进行分析,提供相关的解决办法,希望对大家有所帮助。
芯片发热
这主要针对内置电源调制器的高压驱动芯片。假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热。驱动芯片的最大电流来自于驱动功率MOS管的消耗,简单的计算公式为I=cvf(考虑充电的电阻效益,实际I=2cvf,其中c为功率MOS管的cgs电容,v为功率管导通时的gate电压,所以为了降低芯片的功耗,必须想办法降低c、v和f.如果c、v和f不能改变,那么请想办法将芯片的功耗分到芯片外的器件,注意不要引入额外的功耗。再简单一点,就是考虑更好的散热吧。
功率管发热
关于这个问题,也见到过有人在论坛发过贴。功率管的功耗分成两部分,开关损耗和导通损耗。要注意,大多数场合特别是LED市电驱动应用,开关损害要远大于导通损耗。开关损耗与功率管的cgd和cgs以及芯片的驱动能力和工作频率有关,所以要解决功率管的发热可以从以下几个方面解决:A、不能片面根据导通电阻大小来选择MOS功率管,因为内阻越小,cgs和cgd电容越大。如1N60的cgs为250pF左右,2N60的cgs为350pF左右,5N60的cgs为1200pF左右,差别太大了,选择功率管时,够用就可以了。B、剩下的就是频率和芯片驱动能力了,这里只谈频率的影响。频率与导通损耗也成正比,所以功率管发热时,首先要想想是不是频率选择的有点高。想办法降低频率吧!不过要注意,当频率降低时,为了得到相同的负载能力,峰值电流必然要变大或者电感也变大,这都有可能导致电感进入饱和区域。如果电感饱和电流够大,可以考虑将CCM(连续电流模式)改变成DCM(非连续电流模式),这样就需要增加一个负载电容了。
工作频率降频
这个也是用户在调试过程中比较常见的现象,降频主要由两个方面导致。输入电压和负载电压的比例小、系统干扰大。对于前者,注意不要将负载电压设置的太高,虽然负载电压高,效率会高点。对于后者,可以尝试以下几个方面:a、将最小电流设置的再小点;b、布线干净点,特别是sense这个关键路径;c、将电感选择的小点或者选用闭合磁路的电感;d、加RC低通滤波吧,这个影响有点不好,C的一致性不好,偏差有点大,不过对于照明来说应该够了。无论如何降频没有好处,只有坏处,所以一定要解决。
电感或者变压器的选择
终于谈到重点了,我还没有入门,只能瞎说点饱和的影响了。很多用户反应,相同的驱动电路,用a生产的电感没有问题,用b生产的电感电流就变小了。遇到这种情况,要看看电感电流波形。有的工程师没有注意到这个现象,直接调节sense电阻或者工作频率达到需要的电流,这样做可能会严重影响LED的使用寿命。所以说,在设计前,合理的计算是必须的,如果理论计算的参数和调试参数差的有点远,要考虑是否降频和变压器是否饱和。变压器饱和时,L会变小,导致传输delay引起的峰值电流增量急剧上升,那么LED的峰值电流也跟着增加。在平均电流不变的前提下,只能看着光衰了。
LED电流大小
大家都知道LEDripple过大的话,LED寿命会受到影响,影响有多大,也没见过哪个专家说过。以前问过LED厂这个数据,他们说30%以内都可以接受,不过后来没有经过验证。建议还是尽量控制小点。如果散热解决的不好的话,LED一定要降额使用。也希望有专家能给个具体指标,要不然影响LED的推广。
关键字:LED驱动 电源
编辑:探路者 引用地址:五大关键点简化LED驱动设计
推荐阅读最新更新时间:2023-10-12 22:27
为多核处理器提升电源效率
智能手机、平板电脑和超级本等移动消费类设备面临着提供丰富、多样化和即时的网络多媒体体验等不断增长的需求。系统设计中从屏幕和外设(如收音机、照相机和数据接口)到应用处理器,每个部分几乎都会发生变化。这些变化对电源管理功能的实现产生了重大影响,除了需要管理整个系统的电源,还需要提高电源的效率以实现更长的电池续航时间。 例如,当今最受欢迎的移动设备都配有多个摄像头,包括前置和后置摄像头,一些还可以支持3D摄影和录像,在一些情况下分辨率可高达4100万像素。目前,为了实现更好的视觉体验,大屏幕尺寸正越来越流行,同时伴随着电容式多点触控功能的运用,以及在一些最先进的款式中还趋向于配备有3D功能的屏幕。 就无线连接而言,除了GSM、蓝
[电源管理]
基于LTCR3589设计的带I2C八输出电源稳压方案
本文介绍了LTCR3589主要特性,方框图以及典型应用电路。Linear 公司的LTCR3589是带时序和I2C的八输出电源稳压器,是ARM和基于ARM处理器以及手提微处理器系统的完整的电源管理解决方案。LTCR3589包括用于核,存储器和SoC的三个同步降压DC/DC转换器,用于I/O的同步降压-升压稳压器,以及三个用于低噪音模拟电源的250mA LDO稳压器。 LTCR3589主要特性: Triple I2C Adjustable High Efficiency Step-Down DC/DC Converters: 1.6A, 1A, 1A High Efficiency 1.2A Buck-Boost DC/DC Conve
[电源管理]
工程师该如何选择电源?
由于电子产品的风靡,能够用多种电源供电的设备已经屡见不鲜了。例如,工业手持式仪表或便携式医疗诊断设备大部分时间用电池供电,但一旦插入交流适配器或USB端口,就从交流适配器或USB端口吸取功率了,这时既为电池充电,又为系统供电。在移动系统的另一端,大型高可用性服务器机架内至少有两个电源,以在任何一个电源出故障时,保持服务器正常运行。存储服务器则用超级电容器做备份电源,以在主电源断开时,干净利落地实现无差错停机,当然,也有些服务器采用大电流主电源和小电流辅助电源。所有这些系统都面临着一项重要任务,即在各种不同的可用电源中,选择一个为系统负载供电。 电源多路复用中隐藏的问题 在给定环境中选择合适电源这一任务,听起来简单轻
[电源管理]
Maxim电源管理IC赢得iPhone5青睐
花旗集团分析师Terence Whalen 13日发表研究报告指出,最近的供应链调查确认,类比/混合讯号IC设计大厂Maxim Integrated Products, Inc.已赢得苹果(Apple Inc.)青睐,将为iPhone 5供应电源管理IC。Maxim 13日开高走低,终场小跌0.55%,收25.20美元。
Whalen表示,Maxim产品开始获得搭载高通(Qualcomm)基频/无线电晶片的装置采纳、高通为iPhone提供的电源管理IC据传遭遇难题,都是他导出上述结论的原因。此外,通路调查显示,Maxim开始积极准备提高一款最新苹果电源晶片的产能,时机与iPhone 5的预估上市时间不谋而合。
Wha
[工业控制]
基于LTMR4644的稳压电源解决
开关电源电路中的噪声活跃节点是电路中的共模噪声源。要降低开关电源的传导干扰水平,实际上是减小共模电流强度、增大噪声源的对地阻抗。本文以一款反激式开关电源为例,阐述了其传导共模干扰的产生、传播机理。根据噪声活跃节点平衡的思想,提出了一种新的变压器EMC设计方法。 随着功率半导体器件技术的发展,开关电源高功率体积比和高效率的特性使得其在现代军事、工业和商业等各级别的仪器设备中 得到广泛应用,并且随着时钟频率的不断提高,设备的电磁兼容性(EMC)问题引起人们的广泛关注。EMC设计已成为开关电源开发设计中必不可少的重要环节。 传导电磁干扰(EMI)噪声的抑制必须在产品开发初期就加以考虑。通常情况下,加装电源线滤波器是抑制传导EMI的
[电源管理]
茂达电子频发力再推新款电源管理IC
茂达电子(ANPEC)推出APW7209电源管理IC。APW7209是一个采用固定1MHz切换频率,电流 控制模式DC/DC升压元件,内建N通道开关可驱动10颗串联白光LED。而APW7209可操作在2.5V至6V输入电压范围之间,适合使用于单一锂电池供电的应用上,1MHz切换频率可以有效减少外部电感及电容的体积,内建40V过电压保护功能,可避免负载空接而产生不预期高压。
最高效率可达88%,内部提供0.3V参考电压,当做LED限流可以得到最高效率,并延长电池使用寿命,最后APW7209使用SOT-23-6包装对于节省电路板空间有很大的帮助。
[电源管理]
2188F纯平彩电开关电源设计电路图
前10 年的彩电以三洋公司研发的A3电源居多,以分立元件为主,但目前的彩电是一块IC 加一个开关管的形式,或直接就是一块IC 厚膜的形式。
图3是2007 年TCL 公司推出的2188F纯平彩电的电源部分,用了一个IC :
图3
TDA16846 加一个开关管:场效应管BUZ91A 的形式,整个电路结构显得比较简单,这电路没用光电耦合器做反馈。
彩电一般的开关电源是由振荡电路、稳压电路和保护电路三大部分组成。
1、振荡电路:开关电源振荡电路分为晶体管振荡电路和集成块振荡电路,如STR-S??系列IC,TEA2104、TDA4601、TDA4605、TDA2261、TD
[电源管理]
UPF阵营将Atrenta招至麾下,SGDC低功率设计技术全面开放
基于行业标准SpyGlass技术的宽基设计分析方案领先级供应商Atrenta公司日前已将其用于低功率设计的SpyGlass Design Constraints (SGDC)捐赠给Accellera组织的Unified Power Format (统一功率格式——UPF)技术附属委员会。
Accellera组织的Unified Power Format (UPF)附属委员会是由设计团体、EDA供应商和标准化机构组成的,宗旨在于开发低功率设计行业标准。这一附属委员会向所有人开放,不要求保密协议或者专利许可,邀请所有公司参与并进行技术捐赠。
Atrenta的限定格式让IC设计者可以自定义电压域和电源隔离域设计意图,并在设计
[焦点新闻]