工程师该如何选择电源?

最新更新时间:2014-04-10来源: 电子发烧友关键字:LTC4370  LTC4352  电源 手机看文章 扫描二维码
随时随地手机看文章

  由于电子产品的风靡,能够用多种电源供电的设备已经屡见不鲜了。例如,工业手持式仪表或便携式医疗诊断设备大部分时间用电池供电,但一旦插入交流适配器或USB端口,就从交流适配器或USB端口吸取功率了,这时既为电池充电,又为系统供电。在移动系统的另一端,大型高可用性服务器机架内至少有两个电源,以在任何一个电源出故障时,保持服务器正常运行。存储服务器则用超级电容器做备份电源,以在主电源断开时,干净利落地实现无差错停机,当然,也有些服务器采用大电流主电源和小电流辅助电源。所有这些系统都面临着一项重要任务,即在各种不同的可用电源中,选择一个为系统负载供电。

  电源多路复用中隐藏的问题

  在给定环境中选择合适电源这一任务,听起来简单轻松,但是如果选择不当,后果很严重,可能造成系统故障并损坏电源。如果加在电源输出端的电压较高,那么在并联工作的电源之间进行切换可能导致电流回流到电源中。有些电源如果遭遇能量返回,就会出现故障,使控制环路中断,引起电源输入端子过压,这有可能导致电容器及其他器件烧掉。并联电源切换时还存在一个风险,即所有电源与输出之间的断接时间都可能过长,导致输出电压下降,系统复位或系统运行不正常。当电源之间的电压比较接近时,会出现第三个问题。有些基于比较器的控制方法引入了一种振荡模式,即在电源之间连续切换,这样一来,电源之间的切换就需要周密设计了。

  相同的电源

  让我们从最简单的情况开始—由两个相同的电源给一个系统供电。这里相同的含义是,相同的标称电压,其变化在电源容限范围内通常为百分之几。这种情况出现在高可用性服务器中,这类服务器配备两个或更多冗余电源,以在任何电源出现故障时,能够不间断运行。在这类系统中,一种简单的方法是,选择电压最高的电源给系统供电。两个二极管的阳极分别连接两个电源,阴极则连在一起,形成所谓的二极管“或”电路,这样就实现了由电压较高的电源供电的功能(参见图1)。仅连入一个电源时,这个电路也正常工作。存在两个电源时,电压较高的那个电源,其二极管正向偏置,另一个二极管则反向偏置。

  

  图1:两个电源的二极管“或”电路向负载供电。

  新式服务器中有多个板卡,功率轻易就能超过千瓦,因此12V直流电源须提供50A~100A的电流。运用普通的老式二极管,即使是压差较低的肖特基二极管,对这样两个12V电源进行二极管“或”,如果不是不可能,也要面临可怕的热量管理任务,因为在这么大电流时,两个二极管的电压下降1V,就会消耗很大的功率,例如,在50A电流时,功耗为50W。因此需要压差低得多的理想二极管。正像解决其他许多电路问题时一样,MOSFET再次伸出了援手。MOSFET 加上一个检测电路,可起到理想二极管的作用,正向偏置时(输入高于输出),接通压差非常低,反向偏置时(输入低于输出)则断开。理想二极管压差可降至普通二极管的1/10,因此功耗降至可应对的5W。通过RDS(ON)为2m的单个或并联N沟道MOSFET,很容易实现这样的理想二极管“或”电路。图2显示了一个这样的电路及其I-V曲线。凌力尔特的LTC4352控制一个N沟道MOSFET,以实现理想二极管功能。这样的两个电路并联,就形成了一个理想二极管“或”电路,可用于冗余电源系统。按照一定比例线性跟随MOSFET的压降,可确保电源不产生振荡,平滑切换,而0.5μs 的快速接通和断开时间,则最大限度地减小了输出压降和反向电流。

  

  图2:具UV/OV的LTC4352理想二极管及其I-V曲线。

  理想二极管的功能是无源二极管望尘莫及的。仅当输入处于欠压(UV)和过压(OV)门限设定的有效范围之内时,LTC4352才能成为理想二极管。 STATUS#引脚向下游电路提供MOSFET接通或断开的状态信号,FAULT#引脚指示MOSFET是由于UV/OV状况而关断,还是由于 MOSFET呈电阻性或开路而导致过大压降,后者在故障发生之前发出了即将出现故障的警报。

  让我们共享负载吧

  二极管“或”是一种“赢家通吃”型系统,在这种系统中,电压最高的电源提供全部负载电流。如果两个电源均等地向负载供电,将热量压力一分为二共同承担,那么电源系统的可靠性会大幅提高,电源的寿命也可得到延长。然而,许多调节电源的负载共享电路受到了环路振荡的困扰。与电源变化互动的负载共享控制环路使问题变得复杂了。在这里利用理想二极管概念可以解决问题。通过调节理想二极管压降,补偿电源电压之差,可以使两个理想二极管的输出电压相等。在这两个相等的点和共享负载之间加入检测电阻器,可确保两个电源流出的电流相等或成一定比例。LTC4370二极管“或”均流控制器采用了这种针对两个电源的均流方法(参见图3)。这种方法可补偿高达600mV的电源电压之差,这意味着两个 12V电源具有±2.5%的容限,或两个5V电源具有±6%的容限。

  

  图3:LTC4370在两个二极管“或”连接的12V电源之间均衡10A负载电流。通过调节MOSFET压降来补偿电源电压失配,以实现均流。

  不同的电源

  在上述的服务器例子中,两个电源相同时,二极管“或”和负载共享方法非常适用。但是这些方法不适合电池供电系统,在这类系统中,输入来自电池、交流适配器或 5V USB电源,也就是说,这些电源的标称电压差异甚大。在有些情况下,还会涉及超级电容器备份电源。因此,需要一种更加通用的解决方案,而不是简单地通过衡量电源电压高低来工作。这种解决方案称为优先级供电处理器。该解决方案的基础是,电池供电系统的电源有一个优先顺序。通常情况下,交流适配器排在最前面,只要存在交流适配器,系统就从交流适配器吸取功率。每一种电源都必须有一个确定的有效电压范围(以检测该电源的存在)和优先级。如果某种电源存在,就会按照它的优先级考虑是否用它给系统供电。LTC4417优先级选择器根据3个电源的有效电压窗口和优先级作出选择,仅将其中之一连接到输出(参见图4)。小心切换以免将两个电源连到一起,仅在输出电压低于输入电压时才将电源连接到输出。这最大限度地减小或消除了流回电源的反向电流。另外,这么做还实现了受控的快速切换,以限制输出电压下降和浪涌电流。

  

  图4:LTC4417 3电源优先级供电处理器。

  结论

  视系统中采用的电源种类的不同而不同,首先需要为电源多路复用选择合适的解决方案。可选择的方案是二极管“或”(有或没有负载共享)和优先级供电处理器。不论选择哪种方法,选择正确的电源给负载供电都需要仔细设计,以避免毁掉整个系统。流回到电源的反向电流和输出电压下降要尽量减小,以避免引起电源之间来回振荡性地切换。本文介绍的这些解决方案以简练的方法解决了这些问题。

关键字:LTC4370  LTC4352  电源 编辑:探路者 引用地址:工程师该如何选择电源?

上一篇:开关电源接假负载,并不是想接就能接的!
下一篇:基于IGBT器件的大功率DC/DC电源技术方案

推荐阅读最新更新时间:2023-10-12 22:38

TOPSwitch小芯片大智慧 简化开关电源设计流程
前言 一般情况下,以TOP开关器件为代表的开关电源芯片,其漏极D和变压器初级的一端相接。由于漏感引起的反峰电压反射到变压器的初级,将直接加在漏极上,而反峰电压与输出电压有关,即输出电压越高,反峰电压也越高,对于漏极与源级之间耐压只有几百伏的TOPSwitch器件来说,过高的电压很容易将其击穿,因此,采用TOPSwitch器件制作的 开关 电源 ,大多数采用低压小功率输出。本文通过改进电路,实现了TOPSwitch器件在高压 开关 电源 中的应用。 TOPSwitch-Ⅱ工作原理 TOPSwitch-Ⅱ系列可广泛应用于各种通用及专用 开关电源 、待机电源、开关电源模块中。它将PWM控制系统的全部功能集成到三端芯片中,内含脉宽调
[电源管理]
TOPSwitch小芯片大智慧 简化开关<font color='red'>电源</font>设计流程
开关电源测量的经验总结
电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。 1 开关电源简述 开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。 开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是
[测试测量]
开关<font color='red'>电源</font>测量的经验总结
开关电源稳定性设计
众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。 1 稳定性指标 衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB时所对应的相位。增益裕度是指:相位为零时所对应的增益大小(实际是衰减)。在实际设计开关电源时
[电源管理]
开关<font color='red'>电源</font>稳定性设计
基于AT89C51智能型稳压电源的设计
  本系统研究的直流稳压电源主要是符合智能化、数字化及模块化的特点:智能化指系统有可编程模块能对系统进行智能控制;数字化指系统输出电压通过7段数码管显示,并可通过按键对输出电压进行连续步进数字化调节;模块化指系统由各个相关模块组成,提高了系统的可靠性。   AT89C51智能型稳压电源设计原理   1设计系统框图      系统由各模块组成,其模块构成的系统框图如图1所示。   2组成模块电路设计方案   (1)电源电路模块设计方案。采用LM7815、LM7915系列三端稳压器稳压电路(电路如图2)为运放TL082、单片机AT89C51和数模转换DAC08 32器件提供稳定的工作电压,实现系统的工作电压和系统稳压电源的连
[单片机]
基于AT89C51智能型稳压<font color='red'>电源</font>的设计
基于AN8026变频器高性能电源设计方案
1.前言   变频器在能源节约、电力环保方面意义重大,电动机驱动是电能消耗大户,约消耗全国65%发电量,近三十多年来变频调速已在钢铁、冶金、石油、化工、电力等工作中得到广泛运用,其他家用电器例如变频冰箱,变频洗衣机、变频微波炉等也已相继出现,因此设计可靠高性能的变频器电源尤为重要。本文设计的电源采用开关电源控制集成电路AN8026,AN8026为松下公司开发的反激式单端输出开关驱动控制器,其内部采用RC充放电控制的RS触发器作为驱动信号源,其输出脉冲可直接驱动MOSFET开关管,而不必外设灌流电路。   变频技术目前得到了广泛的应用,而变频器的可靠稳定运行决定了变频器性能指标,作为基础硬件,变频器电源的高效可靠运行至关
[电源管理]
基于AN8026变频器高性能<font color='red'>电源</font>设计方案
肖特基DC/DC转换器需二极管在电源管理中的应用分析
任何非同步直流/直流 转换器 都需要一个所谓的续流 二极管 。为了优化方案的整体效率,通常倾向于选择低正向电压的 肖特基 管。很多设计都采用一个 转换器 设计(网络) 工具推荐的 二极管 。这并非总是二极管的最优选择。更何况,如果设计工具不考虑热性能和漏电流之间的动态变化,则极有可能发生实际性能有别于设计工具的分析或模拟出的结果。本文将探讨一些在选择正确的二极管时应仔细考虑的典型参数,以及如何应用这些参数来快速确定选型的正确与否。 检查损耗 图1给出了非同步直流/直流降压 转换器 的基本框图。D1是所需的肖特基管。左侧是开关S1闭合时(时间为T1)的电流情况,右侧是开关S1打开时(时间为T2)的电流情况。 图1:非同步直
[电源管理]
肖特基DC/DC转换器需二极管在<font color='red'>电源</font>管理中的应用分析
开关电源EMC设计中电容特性的分析
  许多电子设计者都知道滤波电容在电源中起的作用,但在 开关电源 输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,在工频电路中用作滤波的普通电解 电容器 ,其上的脉动电压频率仅有100 赫兹,充放电时间是毫秒数量级,为获得较小的脉动系数,需要的电容量高达数十万微法,因而一般低频用普通铝电解电容器制造,目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。   在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,甚至数十兆赫,它的要求和低频应用时不同,电容量并不是主要指标,衡量它好坏的则是它的阻抗一频率特性,要求它在开关稳压电源的工作频段内要有低的阻抗,
[电源管理]
车辆模式VMM和电源模式Power Mode有什么关系
电源模式Power Mode 我们熟知的电源模式有KL15、KL30、KL31、KL50、KLR,大部分的主机厂在进行整车电源分配设计时会根据用电器的电源模式需求分配对应的模式电源: KL30(BAT+):常电电源,该电源直接连接蓄电池正极,通常用于有唤醒需求ECU(例如PEPS、BCM、DCM、T-BOX等),有After Run需求的ECU(ESC等)以及永久存储需求的ECU; KL15(IGN):ON档电源,该电源通常连接IGN继电器,由电源管理模块EEPM(Electrical Energy and Power Management)控制,通常和车辆启动、运行相关的用电器会挂接在电源模式下(如ECM、TCU等); KL
[嵌入式]
车辆模式VMM和<font color='red'>电源</font>模式Power Mode有什么关系
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved