LED照明系统设计技巧

最新更新时间:2014-05-10来源: 互联网关键字:LED  照明系统 手机看文章 扫描二维码
随时随地手机看文章

  LED照明将会取代主流的白炽照明和其他照明技术,占据市场主导位置。但从旧技术到新技术的转换还需要多年时间。在此期间,LED灯设计师所面临的挑战是如何确保新设计与原本为白炽照明开发的现有控制器和布线架构实现兼容和可靠工作。本文所介绍的是可同时适用于低功率和高功率LED照明系统的解决方案,它久经考验,非常成熟。

  LED灯泡的构造

  一个LED灯包含一个到十几个甚至更多的LED芯片,它们通常串联在一起。每个芯片的发光亮度由通过其中的电流大小决定。由于采用串联连接方式,灯泡内每个LED芯片会自动通过相同的电流,但每个芯片上的电压各不相同。LED的正向电压降通常为3.4V,但会在2.8V到4.2V之间变化。可以对LED进行分类以限制电压变动幅度,但这会增加成本,并且正向电压降仍会随温度和使用时间发生变化。要想提供一致的光输出,LED灯必须由严格规定的高效恒流电源驱动。作为白炽灯的替代品LED灯,该电源必须集成在灯壳内。

  典型集成LED灯包括驱动电路、LED集束以及可同时为驱动器和LED芯片提供机械保护和散热的外壳。

  LED驱动器的要求非常严格。它必须是高效节能的,必须满足严格的EMI和功率因数规格,并能安全地耐受各种故障条件。其中最为困难的要求之一是要有调光功能。由于LED灯的特性与专为白炽灯所设计的调光控制器之间存在不匹配,因此容易造成性能不佳。问题可能表现为启动速度慢、闪烁、光照不均匀、或在调整光亮度时出现闪烁。此外,还存在各个单元性能不一致以及LED灯发出可闻噪声等问题。这些负面情况通常是由误触发或过早关断控制器以及LED电流控制不当等因素共同造成的。

  调光控制器

  照明控制器以线路调光或PWM调光的方式进行工作。最简单的线路调光方式是前沿可控硅控制器。这是目前最常用的照明控制方式,但不幸的是,使用可控硅控制器对LED灯进行调光时会产生大量问题。更先进的线路调光器是电子前沿或后沿调光器。PWM调光器则用于专业照明系统。

  使用前沿可控硅调光器时,调光控制是通过改变可控硅导通每个半周期的相位角来实现的。灯泡的输入功率与调光信号的相位角成一定的函数关系,相位角的变化范围介于接近0°到180°之间。

  可控硅的重要参数之一是维持电流(IH)。这是可控硅在不使用栅极驱动的情况下保持导通所必须维持的最小负载。为维持可控硅的稳定工作,该电流不能为零,IH的典型值介于8mA到40mA。因此,白炽灯的相位角调光器通常有一个规定的最小负载,230V额定交流电压下通常为40W。这是为了确保流经内部可控硅的电流始终高于所规定的维持电流阈值。由于LED照明的功耗非常低,维持电流将成为一个问题。

  另一个潜在问题是浪涌电流。可控硅导通时,高浪涌电流会流入LED灯。最差情况就是相位角达到90°,而此时AC输入电压达到峰值。对白炽灯来说,浪涌电流不会构成问题。但在LED灯中,驱动器的输入级阻抗和线路电容会造成振荡。发生振荡时,可控硅电流将立即降到维持电流以下,使可控硅停止导通。

  要想解决这些问题,就必须修改LED驱动器的规格和设计。

  非隔离式可调光LED驱动器

  图1所示为可用于替换白炽灯的LED灯的非隔离式可调光LED驱动器的基本应用电路图。下面将介绍驱动器的功能,以便阐明该驱动器在成为可控硅调光器的负载时将会出现的问题。

  该控制器是Power Integrations(PI)推出的LinkSwitch-PL器件。它在一个单片IC上集成了高压功率MOSFET开关和电源控制器。该器件提供单级功率因数校正(PFC)和LED电流控制。该电路可用作非连续模式、可变频率、可变导通时间反激式转换器。整流后的交流电源输入由集成的725V功率MOSFET通过高频变压器进行开关。次级绕组上产生的电压在变成LED负载之前会被整流和平滑。LED负载电流还流经检测电阻RSENSE。RSENSE上产生的电压(典型值为290mV)会通过RF出现在反馈(FB)引脚,从而提供精确的恒流反馈控制。DES和RES为LinkSwitch-PL供电,DZOV和ROV在LED开路时提供过压保护。

LED照明系统设计技巧

图1:非隔离式LED驱动器的应用电路图

  本设计中的输出电流与电源变压器的特性无关。电感变化对恒流特性无任何影响。因此,这能使恒流特性具有非常严格的容差,这在单级转换器中非常突出。

  在执行调光控制时,LinkSwitch-PL器件会同时检测输入电压过零点和可控硅调光器的导通角。输入电压过零点的检测是通过漏极节点内部完成的。控制电路会处理此数据并设定需要的反馈电压,从而设定LED负载电流。

  浪涌电流

  如图1所示,驱动器对可控硅控制器构成高阻抗、大电容负载。此外,还将有电容和电感所构成的输入EMI滤波电路。在每个半周期,都会产生浪涌电流,从而造成振荡(如上所述)。

  要想实现无故障的调光工作,驱动器必须能够限制振荡并防止可控硅电流降到维持电流值以下。图2所示为具备此功能的驱动器的完整电路图。

LED照明系统设计技巧

图 2:用于A19白炽灯替换灯的5W、15V可控硅调光LED驱动器的电路图。

  图2中的电路提供350mA的单路恒流输出和15V的LED串电压。使用标准交流电源可控硅调光器可将输出电流减小1%(3mA),并且不会造成LED负载不稳定或闪烁。该驱动器可同时兼容低成本的可控硅调光器和更复杂的电子前沿及后沿调光器。

  该驱动器的功能增加了输入EMI滤波和三个可控硅调光所特有的元件:一个无源衰减电路、一个有源衰减电路和一个泄放电路。

  输入EMI滤波可确保符合IEC环形波和EN55015传导EMI规定。然而,关键点在于LinkSwitch-PL控制器集成了内置的频率抖动特性。该特性可分散开关频率和降低EMI峰值,使EMI滤波电路的尺寸远低于正常要求。这有助于大幅减小对可控硅带来的电感性负载,从而降低发生振荡的可能性。

  电阻R20构成无源衰减电路。有源衰减电路在每个交流半周期通过输入整流管连接串联电阻(R7和R8),在剩下的交流周期则通过并联可控硅整流器 (Q3)绕过该电阻。电阻R3、R4和C3决定Q3导通前的延迟时间,然后将衰减电阻R7和R8短路。无源衰减电路和有源衰减电路可在每个半周期可控硅导通时,共同限制峰值浪涌电流。

  电阻R10、R11和C6形成泄放电路,确保初始输入电流量可以满足可控硅的维持电流要求,特别是在导通角较小的情况下。对于非调光应用,则可以省去无源衰减电路、有源衰减电路以及泄放电路。

  隔离式LED驱动器

  图2中的驱动器针对低功率、电气非隔离式集成LED替换灯专门优化过。PI针对要求电气隔离的更高功率LED照明系统,推出了LinkSwitch-PH控制器。图3所示(详见本刊网站)为使用LinkSwitch-PH的隔离式LED驱动器的电路图。

LED照明系统设计技巧

图 3:14W可控硅调光的高功率因数LED驱动器的电路图。

  该电路能够在90VAC至265VAC的输入电压范围内对28V的额定LED串电压提供0.5A驱动电流,其特性包括超宽调光范围、无闪烁工作(即使使用低成本的交流输入可控硅调光器)以及快速平滑的导通。

  它所使用的拓扑结构是运行于连续导通模式下的隔离反激式结构。输出电流调节完全从初级侧检测,因此无需使用次级反馈元件。单级内部控制器调整高压功率MOSFET的占空比,以保持输入电流为正弦交流电,从而确保高功率因数和低谐波电流。

  该电路的功能与图2中的电路大体相似,最明显的差异是该电路采用了电气隔离,没有使用与负载串联的检测电阻。反馈控制通过变压器上的偏置绕组提供。反馈控制具有两项功能:经由旁路(BP)输入对LinkSwitch-PH供电,经由反馈(FB)输入提供电流反馈。LinkSwitch-PH提供的另一个重要输入是电压监测(V)。该引脚与外部输入电压峰值检测器接口相连,后者由D1、C3、R1、R2和R3构成。外加电流用于控制输入欠压(UV)和过压(OV)的停止逻辑,并提供前馈信号以控制输出电流和远程开/关功能。该电路集成了衰减电路和泄放电路,以确保可控硅工作。

  在任何LED照明装置中,驱动器的性能都决定着最终用户的照明体验,包括启动时间、调光、无闪烁工作和各单元之间的一致性。14 W驱动器可同时在115 VAC和230 VAC下兼容各种调光器并兼容尽可能宽的调光范围。因此,衰减电路和泄放电路会起到相对积极的作用,但这会让效率下降。即使如此,该电路的效率仍能在115 VAC下≥85%,在230 VAC下≥87%。如果不需要调光功能,可省去衰减电路和泄放电路,可取得更高的效率。

  随着LED照明市场潜力的不断扩大,上述设计折衷凸显出了一系列哲学问题。既然新技术的功耗只是旧技术的十分之一,在会降低效率(即增加功耗)的情况下,是否真的有必要与所有旧的可控硅控制器实现兼容?当使用一个最低负载规格为40W的1000W可控硅控制器提供驱动时,我们能否让一个5W LED灯正确工作呢?是的,这是可以做到的,也许应该尽快做到。但我们必须谨记,完整照明解决方案的最终目标是实现最大效率和最低生命周期成本。

关键字:LED  照明系统 编辑:探路者 引用地址:LED照明系统设计技巧

上一篇:小型LCD背光的LED驱动电路设计
下一篇:LED路灯驱动电源设计的五点忠告

推荐阅读最新更新时间:2023-10-12 22:39

LED照明新市场——云计算数据中心
 云计算的战争,不会停止,只会迭代。在所有商业竞争的迭代进程中,能追赶上时代步伐的都是对市场趋势具有敏锐嗅觉的企业。云计算领域,经过2016年的价格硝烟,2017年整个云行业似乎冲破了价格的桎梏,回归到平静。纵观国内云厂商格局,硝烟之后酝酿着更大的变革。下面就随嵌入式小编一起来了解一下相关内容吧。 近日,一家位于德克萨斯州休斯敦的XtraLight公司最近开始关注数据中心LED照明。经研究发现,数据中心可以采用最佳的管理能效措施和策略来将能源消耗降低40%,因此XtraLight才开始关注该领域。 该公司指出,通过该研究发现,数据中心可以通过将数据中心切换到拥有先进的传感器和控制系统的节能LED照明,从而将其电源使用效率(PUE
[嵌入式]
茂达电子新推出高效白光LED驱动IC
茂达电子(ANPEC)新推出白光LED驱动APW7128.APW7128是一颗高功率,高效率的升压模式白光LED驱动IC,输入电压范围可从2.7V至21V,最高输出电压可达30V,最大电感电流可达3.5A,效率最高可达95%,适合使用于大尺寸的LCD面板的背光应用。 APW7128具备输出过压保护及过热关机功能,输出过压保护功能可防止因LED开路使得输出电压过高而损坏IC,过热关机功能可避免高功率操作下IC温度过高而损坏IC,另外,IC还提供了待机模式功能,进入待机模式时静态操作电流可低于1μA。 APW7128除了可使用一PWM信号调整LED亮度,另外还提供了简单的光感应器连接接口,能够允许使用光感应器
[电源管理]
LED照明与功率因数关系解析
交流电流过负载时,加在该负载上的交流电压与通过该负载的交流电流产生相位差,人们便从中引出功率因数这一概念。人们生产、生活用电来自电网,电网提供频率为50Hz或60Hz的交流电。作为交流电的负载有电阻、电感、电容三种类型。 当交流电通过纯电阻负载时,加在该电阻上的交流电压与通过该电阻的交流电流是同相位的,即它们之间的相位夹角ф= 0°,同时在电阻负载上消耗有功功率,电网要供出能量。当交流电通过纯电感负载时,其上的交流电压的相位超前交流电流相位90°,它们之间的夹角ф= 90°,在电感负载上产生无功功率,电网供给的电能在电感中变为磁场能短暂储存后又回馈到电网变为电能,如此周期性循环不已,结果电网并不供出能量,故谓“无功功率
[电源管理]
高性能LED背光是手机应用首选
中小尺寸显示面板主要产品类型有LCD(TN/STN LCD、TFT LCD)及OLED等。其中TN/STN LCD及TFT LCD为已经经历20年的发展,技术比较成熟,从原理上非主动发光,需要背光源支持。OLED为主动发光,可视性好,响应速度快,从寿命、技术成熟度上低 于LCD产品。 高性能LED背光是手机应用首选 关于LCD的背光源,一般来说传统方案采用冷阴极荧光灯(CCFL)和电致发光(EL)板,但这些电路对于当前的手持式消费类产品而言存在尺寸大、价格昂贵、复杂度高等问题。目前采用LED背光逐渐成为中小尺寸LCD的首选。 2003年以来手机的换彩屏的风潮带动了LED的需求,尤其白色LED供不应求。
[电源管理]
解析两款常见LED照明调光控制解决方案
LED 照明以其发光效率高,使用寿命长,亮度控制简单和环保的优势,迅速受到广大用户的欢迎。作为新型的节能光源,LED灯具会逐步地取代传统的白炽灯泡。 LED照明 的不断普及对调光和控制技术提出了越来越高的要求。当前用户主要关心的是,LED灯具必须要使用安全、重量轻、寿命长、不影响用户健康,并可适用于现有的调光设备以及可以承受的价格。   要满足用户的愿望,就要求驱动电源转换效率高、输出电流纹波低、无光耦设计,并且在接入任何调光器,无论是支持或者不支持的型号,都要保证灯具的安全性能。这对LED的驱动电源提出了极大的挑战。越来越多的LED灯具厂商意识到,传统的驱动方式很难同时兼顾到所有的要求,无法大量推广LED灯。数字电源技术突破了
[电源管理]
解析两款常见<font color='red'>LED</font>照明调光控制解决方案
LED灯更节能环保的优势何在?
2014年的诺贝尔物理学奖让发光二极管成为了公众关心的焦点。近些年来,从发光二极管提供背光的液晶显示器到由其提供 照明 的台灯,这种新型的照明方式正在越来越多地出现在我们的生活中。那么,发光二极管与传统照明方式相比,有哪些优点,它又是如何为我们提供照明的呢?    白炽:并不高明的发光   在了解发光二极管的工作原理以及它为什么更加节能之前,我们不妨来看一下传统的白炽灯,也就是俗称的电灯泡是如何发光的。   如果我告诉你,我们身边的所有物体都在发光,你可能会觉得非常惊讶。是呀,常识告诉我们,天空中只有恒星能发光,连月亮都是反射光;生活中除了电灯、蜡烛等,没看见其他的物体也在发光呀?   科学家告诉我们
[电源管理]
<font color='red'>LED</font>灯更节能环保的优势何在?
LED显示屏市场的发展基本已趋于稳定,行业发展速度变缓
 在短短数十年间,我国的LED显示行业经历了飞速发展,历经磨难实现了蜕变。这中间有太多的辛酸苦辣,遭受了太多的打压。行业从零起步,从一穷二白到拥有全球最完备的产业链,从仰人鼻息到自给自足,甚至成为世界上最大的LED显示屏制造基地,从跟随者到如今小间距领域的领导者。行业的锐意进取取得了如此成绩,尤其是小间距的弯道超车,是行业全体的骄傲和自豪。下面就随手机便携小编一起来了解一下相关内容吧。 近年来,随着LED显示屏行业逐渐进入深度发展期,一方面行业洗牌调整不断加剧,屏企之间竞争日益白热化,而另一方面终端市场也日趋理性,屏企开始更加关注自身产品质量和性能的提升。正如业内人士所说“这是LED显示屏最坏的时代,也是最好的时代”,同时互联网
[手机便携]
linux 中断驱动和led驱动读写的函数清单
请注意, linux的应用层对字符设备都是采取文件读写的方式,所以说我们的驱动程序也是用的是文件的形式。 我们需要把所有的驱动程序封装到文件的读写形式里面。 1、 static int XXX_open(struct inode *inode, struct file *file) //这个函数是挂载到struct file_operations open里面的。 此函数需要完成对各种引脚或者总线的硬件初始化,中断初始化 等等 2、static ssize_t XXX_write(struct file *file, const char __user *buf, size_t count, loff_t* ppos) /
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved