白炽:并不高明的发光
在了解发光二极管的工作原理以及它为什么更加节能之前,我们不妨来看一下传统的白炽灯,也就是俗称的电灯泡是如何发光的。
如果我告诉你,我们身边的所有物体都在发光,你可能会觉得非常惊讶。是呀,常识告诉我们,天空中只有恒星能发光,连月亮都是反射光;生活中除了电灯、蜡烛等,没看见其他的物体也在发光呀?
科学家告诉我们,任何物体只要它的温度高于绝对零度,就无时无刻不在以电磁波的形式向外界散发能量,这叫热辐射。电磁波的波长从几千千米到不足1纳米,跨越了巨大的范围,但是只有400-800纳米这很窄的一段才能被我们的眼睛所感知,这就是通常所说的可见光。所以我们可以说,包括我们自身在内的所有物体都在发光。
然而一个物体发出的电磁波并不是均匀地覆盖所有的波长,而是主要地集中在某个波长附近,而这个波长的长短与物体的温度成反比。对于温度在室温附近的物体来说,它们发出的电磁波主要集中在波长比可见光长的红外线,所以可见光的比例微乎其微。这就是我们看不见这些物体在发光的原因。
随着物体温度一步步升高,它的热辐射不仅会变得更加强烈,而且发出的电磁波也逐渐变得以可见光为主,因此这些原本看不见发光的物体会变得明亮起来。例如电炉丝加热到几百摄氏度时会发红,就是因为温度升高使得红光取代了红外线,在热辐射中占据了支配地位。如果温度继续升高到几千摄氏度,那么可见光中波长更短的黄、绿、蓝等颜色的光也被大量释放出来。不同波长的可见光混合在一起,我们就看到了与阳光类似的白光,这就是白炽现象。在白炽灯出现之前,人们通过燃烧柴火、灯油或者各种蜡来照明,实际上也是在利用白炽现象,只不过这时候利用的是化学反应产生的高温;而白炽灯则是通过电流将钨丝加热到2,000摄氏度以上,从而产生大量的可见光。
图1 不同温度的物体的热辐射的比较,曲线由上至下分别是温度为15,000K(0K对应-273.15摄氏度)的恒星、温度为5,800K的恒星(太阳)、温度为3,000K的恒星和温度为310K的人体可见物体。横纵坐标分别为波长(单位为纳米)和热辐射的相对强度,平行于纵坐标的窄色带表示可见光的范围。由此可见物体温度必须足够高才会发出大量的可见光。 白炽现象只是物体被加热时的一个“副产品”,而特地让白炽灯发光要消耗很大的电能,才能把灯丝加热到很高的温度,这并不是很划算。由于所有热辐射发出的电磁波都会覆盖一个宽广的波长范围,白炽灯在发出可见光的同时还会发出大量的红外线、紫外线等,它们对提供照明毫无帮助,却消耗了大量的能量。打个比方,某天你到食堂想买10元钱的馒头,大师傅却给你5毛钱的馒头和9.5元钱的米饭。你说我今天不要米饭,只要馒头;大师傅说不行,馒头和米饭只能这样搭配着卖。为了保证买到足够的馒头,你只好花200元买来10元的馒头,多花了190元钱。白炽灯的工作原理就像这样,输入的电能只有5%左右能够被转化成可见光,其余都变成热能白白浪费掉了。
白炽灯极低的效率不仅浪费大量的电能,产生的热量也带来了很多令人头疼的问题。这些热量传递到环境中,可能会让使用者感到不舒服,还会轻易地让周围的纸张、布匹等可燃物质的温度升高到燃点以上,带来很大的火灾风险。另外,在几千摄氏度的高温下,许多常温下很稳定的物质都会变得非常活泼,这意味着灯丝很容易损坏。尽管现代的白炽灯使用熔点极高的钨丝,并将灯泡内部抽成真空或者充入惰性气体防止钨被氧化,白炽灯的使用寿命仍然不长,一般不超过1,000小时。也就是说,哪怕灯泡质量再好,每天只用提供3-5小时的照明,一年左右也必须更换了。
因此,尽管白炽灯为现代文明的进步做出了不可磨灭的贡献,仍然无法避免退出历史舞台的命运。目前,各国政府都已经将淘汰普通白炽灯列上了日程,未来几年时间内,白炽灯将逐渐从人们的视野中消失。那么谁来继续为我们提供照明呢?那就是发光原理截然不同的冷发光。
效率更高的冷发光
我们知道,如果用脚去踢一个放在地上的足球,那么每次足球飞起的速度都不尽相同,这是因为我们很难保证每次用力相同。然而如果让这个足球从二楼阳台上自由落下,那么它总会以相同的速度落到地面。这是因为我们把足球从一楼带到二楼的过程中克服了重力的吸引,足球增加了势能。当足球从二楼落下时,增加的势能释放出来,赋予了足球速度。由于楼层的高度是固定的,增加的势能也是固定的,足球落地时的速度自然也是相同的。
我们还知道,原子是由原子核和核外的电子组成的,原子构成分子是这些电子相互作用把不同的原子维系起来的。无论在原子还是分子中,这些电子也像分别住在一栋高楼中,高楼的每一个楼层被称为能级;楼层越高,对应的能量也就越高。一般来说,电子入住这样一栋高楼时,总是从能量最高的“一楼”开始,逐渐占据上面的楼层。当全部的电子入住完毕时,大楼里还会有许多楼层空着。假设某个分子中的电子占据了大楼的1~10层,如果我们把原本处在下层的电子移动到上一层,那么电子在这个过程中也增加了能量。如果让这个电子回到下层,那么多余的能量也会被释放出来,只不过不是增加速度,而是释放出电磁波。如果电磁波的波长刚好在400~800纳米这个范围,那么电子在这个移动过程中就发出了可见光。演唱会上,歌迷手中挥动的萤光棒就是一个典型的例子。萤光棒买来时并不会发光,一旦我们将它弯曲,萤光棒内部原本被分隔开的几种化学物质混合到一起发生化学反应;反应释放出的能量让某些电子从能量低的状态进入能量高的状态,当它们再次回到能量低的状态时,光就被释放出来了。
图2 冷发光的一种常见的原理:电子先从外界吸收能量,从能量较低的状态进入能量较高的状态;随后返回能量较低的状态,将多余的能量以可见光的形式放出。 正在发光的荧光棒并不像点亮的白炽灯那样烫手,因此像萤光棒这样的发光通常被称为冷发光。冷发光并不需要像白炽灯那样将物体加热到很高的温度,因此对能量的利用率自然更高一些。冷发光还有一个独特之处,那就是一般不会像白炽发光那样覆盖一个很广的波长范围,而是集中于某一特定的波长。例如一根黄色的萤光棒绝不会发出红光或者蓝光,更不会发出对照明毫无帮助的红外线和紫外线,这也是冷发光对能量的利用率高于白炽发光的一个重要原因。
图3 萤光棒的发光是典型的冷发光。通常萤光棒只能发出一种颜色的光,通过改变萤光棒中化学物质的结构可以得到发不同颜色光的萤光棒。
荧光灯:冷发光的典范
前面提到的萤光棒是利用了化学反应让电子进入高能量的状态,我们也可以利用光来给电子提供能量。例如把一张钞票放在紫外灯下,我们会发现有的区域发出蓝光,这是因为这些区域里某些物质的电子能够吸收紫外线的能量,从而产生了冷发光。这样由光提供能量的冷发光被称为荧光或者磷光,而荧光灯就是利用了这一原理。
荧光灯灯管的内壁涂有一层荧光粉,两端是钨制灯丝,灯管中添加少量的汞,并充入氩气等惰性气体。电路接通后,电流流经灯丝,大量的电子从灯丝中释放出来。这些电子与灯丝中氩气的原子发生激烈的碰撞,使得氩原子中的一些电子逃逸出来;而氩原子自己则带上正电,变成了氩离子。这些电子和氩离子从灯管的一端移动到另一端,在移动过程中放出的热量把液态汞变成了汞蒸汽;而进入到蒸汽中的汞原子也与电子和氩离子发生碰撞。碰撞的结果,大量的紫外线从汞蒸汽中被释放出来。荧光粉吸收紫外线的能量,随即产生荧光或者磷光现象。这些物质发出的不再是紫外线,而是可见光。这样,通过几道工序的互相配合,荧光灯就把电能转化为光能。
由于依靠冷发光原理提供照明,荧光灯的效率要大大高于白炽灯,可以将20-25%的电能转化为光能。荧光灯的使用寿命也大大长于白炽灯,理论上至少可以持续提供10,000小时的照明。不过人们仍然不满足这样的数字,于是又开发了另一种借助冷发光原理的灯具——发光二极管。
上一篇:购物中心LED照明设计详细方案分析
下一篇:如何选择合适的LED灯具?照明设计师有绝招!
推荐阅读最新更新时间:2023-10-12 22:52
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC