现在CRT(阴级射线管)电视逐渐被LCD电视取代,同时,家庭购买数量也在稳步增长,如今美国平均每个家庭拥有2.4台LCD电视,远大于1990年每个家庭拥有1台CRT电视的平均数。 虽然每台LCD电视的耗电量在逐年下降,其普及率的提高却逐年增加每个家庭的电视耗电总量,在家用电器中,LCD电视已成为紧随电冰箱之后的主要耗电电器。
因此,一系列的LCD电视节能标准应运而生,其中最严格的当数将于2012年5月1日起生效的EPA能源之星5.0标准,尤其针对50寸以上的超大屏幕LCD电视,强制规定了108瓦的使用模式的能耗上限。 能源之星节能标准也第一次规范了电视的绝对能耗额,有别于以往的与屏幕尺寸对应的相对标准。
图1:64通道全集成LED区域背光驱动晶片
在过去的10年来,我们目睹了LCD电视的信号处理通路的发展历程:多种功能模块逐步集成为单晶片,在迅速降低成本的同时,能耗也随之逐步下降。 类似的发展与革新也在近年来发生在LCD电视的电源通路上,其中最主要的当数LCD电视中最大能耗的单元功能,即超过LCD电视总能耗60%以上的LCD背光。
正如笔记型电脑的背光在过去2年内基本上完成了从CCFL(冷阴极萤光灯)至LED背光的转换,LCD电视背光的转换会在近年内完成。 其主要节能功效源自于LED高于CCFL的光电转换效率,并随着LED发光材料技术的快速发展,其节能效果会越来越显??着。
最直接了当的LCD电视的LED背光方法是沿用笔记型电脑的LED背光方案,将多颗LED排成一列,安放在LCD显示屏的上下两侧。 这样一来,在LCD电视上可以继续保留笔记型电脑LED背光的成本低廉、体积纤薄的优点,并在相当程度上保留并简单延伸其已有的生产线及工艺,尤其是对中小屏LCD电视,不失为有效方案。 为了进一步降低成本,甚至仅下边单侧的LED背光方案在小屏幕LCD电视中也曾采用。
图2:侧下式及直下式的区域调光
这种侧下式(Edgelit)的LED背光电视走入市场后,因其纤薄的流行风格,广受市场的青睐,进一步提高了LED背光的LCD电视的市场地位,迎合了对价格较敏感的客户群需求。 同时,从技术角度上,科技人员利用LED快速的光电转化速度,发明了区域调光(Local Dimming)技术,与侧下式或直下式(Directlit)的LED背光结构相结合,将整屏图像分为1维或2维的区域,并根据每一个区域内显示图像的内容动态地调整区域LED背光亮度,大大地提高了图像对比度和色彩饱和度,在进一步降低LCD电视能耗的同时,将LCD电视的图像质量提高到远优于 CCFL电视及PDP(等离子)电视的水准,迎合了对图像品质较敏感的客户群需求。
iWatt是LED区域背光领域的技术领先企业,凭借其多年来在数位电源领域的成功经验,以及在LED照明及智慧电源市场的领导者地位, 将其数位电源控制技术推广至LCD电视的LED背光应用。 iWatt独创的自适应智慧专利技术可以自动检测并补偿由于LED压降(VF)不匹配因素,使众多通道LED共享同一电源成为可能,并结合其数位电源的强大功能,解决了众所周知的高压开关及整流电阻的集成热损耗问题。 在2010年推出了世界上第1颗64通道全集成LED驱动晶片,取代了传统上需要用4颗16通道晶片,32颗双封装高压开关管,及64个电流检测电阻来实现的全部功能,将关键器件总管脚数目从原来的576管脚降至仅需的88管脚(如图1),同时,其强大的SPI可编程能力,使该晶片同样适用于侧下式及直下式的区域调光(如图2),在提供高品质低成本LED背光的同时,进一步降低LCD电视的能耗,为客户提供了成本最低、体积最小的LED背光方案。
如果2012年全世界预计销售的1.7亿台LED背光的LCD电视均采用侧下式或直下式区域调光,将节省30兆瓦的电量,足以供应美国纽约市所有家庭10个月的总用电量。
上一篇:12V-LED与分布式恒流技术
下一篇:LED驱动电源现状剖析及展望
推荐阅读最新更新时间:2023-10-12 22:42
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC