Luxeon 大功率LED在散热性能方面大大地优于普通的小功率LED,电通道和热通道分离开,它的LED芯片都连接在一个金属的嵌片上,散热性能得到很大的改善。
但是,大功率LED用于特种灯具,或用于恶劣环境使用的灯具,这些灯具的外壳防护等级一般都在IP65以上,如果外壳为非金属(如塑胶)材料,尽管LED连接上了铝基板(MCPCB),但铝基板上的热量如果不能被有效地传导至外壳表面,则聚集的热量会使铝基板的温度急剧上升,导致温度过高,增加了LED失效的可能性,造成LED光衰加剧,寿命缩短。
理论上计算灯具散热的情况,灯具的导热理论有许多困难,主要的困难是传导和对流同时对热传导起着作用,而对流是在密闭空腔内的对流,边界条件十分复杂;传导也是要通过多层导热物质、多层界面,截面积通常又是不等的,导致热流线分布的情况很难在计算之前就能通过分析得到。
由于灯具是在开启后逐渐升温,最后达到热稳定状态,也就是说,热稳定状态时各点的温度最高,所以灯具的散热计算一般只考虑稳态的情况,瞬态的温度分布情况并不重要。对于稳态含热源在各向同性的单一介质中的导热服从Poisson方程[1]:
式中为介质的导热系数,q''''''为热源的发热功率。
由于灯具的结构是多种介质,所以在实际计算中,必须对每一种介质逐一求解上式,计算灯具内的温度场分布是十分困难,而且是没有必要的。实际上,我们所关心的是某些部位的温度是否在可以容忍的温度范围之内,只要计算出这些部位在达到热稳定时的温度即可。
本文对效等电路的热阻算法进行了探讨,热阻算法的好处是无需知道确切的环境温度,也不必求解灯具内的温度场,直接计算灯具内关注点的温升,困难是热流线的分布必须通过分析而不是计算得到,而这一过程往往又是很复杂的。
下面以一个实例的计算来说明等效电路的热阻算法。
灯具要求的基本结构如下图,LED 处于密闭的塑胶外壳内,右侧的绝热层较厚,比较起其他部分导热,其导热基本可以忽略不计,热量主要通过支撑架、塑胶外壳、橡胶外套, 然后通过外部空气对流散到空气中。
1.简化模型:
(1) 铝基板视为一个等温热源;
(2) 支撑板与与铝基板之间有一个附加导热层;
(3) 由于塑胶的热导率比空气的热导率高得多,所以,空气的导热可以忽略不计;
(4) 支撑板与塑胶外壳之间有一层附加导热层
(5) 塑胶外壳与橡胶外皮之间为紧密接触
(6) 铝基板与外壳之间的对流导热可以忽略不计[2]
所以总热阻:
R=R1+R2+R3+R4+R5+R6
其中
R1 为支撑板与铝基板之间的附加导热层的热阻;
R2 为支撑板的热阻;
R3 为散热板与塑胶外壳之间的附加导热层的热阻;
R4 塑胶外壳的热阻;
R5 为橡胶外皮的热阻;
R6 为橡胶外皮处于空气中对流换热的热阻[1]。
2.计算
下面分别计算各部分热阻:
上述各式中,
ki(i=1,2,3,4,5)为各介质的导热系数;
Ai(i=1,2,3,4,5)为各介质的导热等效截面积;
di(i=1,2,3,4,5)为各介质的导热长度;
上式中, 为平均换热系数;
L 为定性长度,在大圆柱对流换热情况下,通常取圆柱直径;
GrL和Pr分别为无量纲的格拉晓夫数和普朗特数,不同情况下的数值可以查表获得;
C 为适配系数,在层流的情况下通常取0.53~0.54;
A6为对流换热的有效面积;
k6为空气的导热系数。
于是总热阻为
R=R1+R2+R3+R4+R5+R6=86.37(W/K)
LED约有1W的功率变成热量则铝基板的温升为:
ΔT=(T2-T1)=qR=86.37 (K)
其中T2为铝基板温度,T1为环境温度。
若环境温度为40℃,则铝基板的温度将要达到126℃,此时LED的结温达到166℃,根据Lumileds公司的“Luxeon Reliability”一文中介绍,Luxeon LED的失效与温度的关系为:
这样高的温度Luxeon的失效几率比结温120℃时失效几率大92854倍,接近10万倍。这种温度下运行可靠性很差,所以这种导热结构不可行。从各个热阻分量看,主要的热阻是支撑板的传导热阻,改进必须是针对它的结构改进。
若采用另一种热传导结构,取消塑胶的支撑架,换成0.3mm厚的电解铜散热板,如下图:
其它部分不变,电解铜散热板的热阻为:
电解铜散热板的折边有6mm,这部分的等效热阻为:
于是,总热阻变为:
若环境温度为40℃,则铝基板的温度将要达到64.6℃,此时LED的结温达到104.6℃,从理论上说,这种热传导结构是可行的。
下表是两种结构温度试验与理论计算结果对照
3.讨论
从上面计算可以看出,采用等效于电路的热阻计算法,选取合适的简化模型,对于不同热传导结构中,温度关注点的温升进行计算,可以在开模具之前判断热传导结构的优劣,同时可以根据各部分热阻的计算结果判断主要的结构改进方向,这对于指导和改进结构设计具有实际的意义。
上一篇:LED灯丝灯驱动“小金库”
下一篇:提高LED显示屏散热量的七点技巧
推荐阅读最新更新时间:2023-10-12 22:49
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC