反激式开关电源可在1.1V电压下点亮HBLED灯

最新更新时间:2015-02-21来源: 互联网关键字:开关电源  HBLED灯 手机看文章 扫描二维码
随时随地手机看文章
 本设计实例展示的是一种利用单节1.5V电池驱动小功率电子电路的方法。它基于一种自激振荡器设计,该自激振荡器可驱动一个反激式变压器生成更高的可控电压。本设计可以用来为模拟电路、微控制器以及其他任何轻负载供电。

  该电源电路经过设计、仿真并最终构建出来。它能够以小于50mW的功耗,甚至在电压降至1.1V的条件下可靠运行。经测试,对于给定的电路值,通过调整单个电阻器的值所产生的稳压输出在6V~24V之间。输出功率足以驱动低功耗模式(15μA@32kHz)下的PIC微控制器。在没有任何修改的情况下,该电路还可作为一个闪光灯,以0.1Hz~20Hz的速率点亮一串LED灯或一个LED电源指示灯。虽然对于其他“简单”任务来说,这种设计可能看起来电路过多,但考虑到具有电源电压低以及输出可调节或闪烁受控的优势,该设计仍有价值。

  为了用该电路在图1所示+VREGOUT处获得稳压输出,例如下文提到的20.7V,应将电阻器R2和R3分别设置为680Ω和100kΩ。R11两端的电压通过R5/R11分压器设置为140mV左右。由Q1构成的振荡器在施加电源的情况下持续运行,并将能量由L2磁耦合至L3。一旦C1两端的电压上升至超过2V,则比较器U1将得到有效供电。一开始,R2两端的电压会随着电容器的充电而逐渐升高,直至其超过R11两端的电压。在该连接方式下,集电极开路的比较器U1会不断将该电压与140mV进行比较。由Q2/Q3组成的晶闸管未上电,且未被U1的输出电压触发。电容器持续顺畅充电。因此,基于R2与R3的组合值,U1输出电压将在以下情形升高:

  T1可使用不同形状和尺寸的磁芯。为重现上述结果,建议采用电感因数约为80nH且相对磁导率(μ)约为80的磁芯。EPCOS公司订单编号为B66361G0100X1的ETD磁芯、Ferroxcube公司的环形磁芯TN33/20/11-2P80或类似产品都非常适用。

  对于图1中的元件值(除R2= 680Ω和R3=100kΩ外),当VC1=20.7V时,晶闸管将被触发。输出滤波器由L4和C3构成。C1在电路中担任两种角色:第一,作为电荷存储“桶”;第二,与R10一起提供一定的环路稳定性。电阻器R4用于上拉U1的开路集电极,而D3用于防止U1的输出偏置受到扰乱。

  图1:1.5V逆变器的电路图。电感器L1和L2(10匝,22AWG)及L3(130匝,32AWG)缠绕在一个Fair-Rite公司器件编号为5961001801的磁芯上

  要将电路用作一个三LED闪光灯/频闪灯,R10应为100Ω。对于图中所示的元件值,当VC1=6.33V时,晶闸管被触发。一旦晶闸管被触发,Q4基极将会被施加约为2V的脉冲,使之完全开启。这将产生较大的Q4集电极电流,导致C1快速放电。如果该集电极电流产生并流过一串LED或单个LED电源指示灯,LED将会逐渐变亮,直至Q4基极的驱动电压较大时出现明亮闪光。放电也会关闭U1(即其电源电压降至2V以下)。因此,在C1恢复充电过程前,VR2会降至约43mV的最低值,然后重复上述过程。LED闪烁时,需要加上一个限流电阻(R10),否则LED会损坏。仿真显示,在50%处所测得的峰值电流脉冲为3.3A,持续时间为50μs。闪烁率可以通过改变R2或R11进行调整(图2)。

  图2:LTspice仿真得到的LED闪光灯/频闪灯中的时序波形,R10中的电流是在假定LED电源指示灯D4未连接的情况下测得的

关键字:开关电源  HBLED灯 编辑:探路者 引用地址:反激式开关电源可在1.1V电压下点亮HBLED灯

上一篇:LED照明与色温技术详细解析
下一篇:购物中心LED照明设计详细方案分析

推荐阅读最新更新时间:2023-10-12 22:52

开关电源原理与设计(连载三)串联式开关电源储能滤波电感的计算
1-2-3.串联式开关电源储能滤波电感的计算 从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式: iLm =(Ui-Uo)/L *Ton + i(0) —— K关断前瞬间
[电源管理]
实例演示,带你深入了解开关电源测试
  近几年,电力电子设备与人们的工作、生活的关系日益密切,程控交换机、通讯、电子设备、控制设备等都已广泛地使用了开关电源,大大促进了开关电源技术的迅速发展。在开关电源向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展的同时,也对产品设计验证和功能测试提出了更为严格的要求。本文中将以 RIGOL(北京普源精仪科技有限责任公司)的产品为例介绍一些开关电源的常用测试方案。本测试方案中用到的仪器分别是RIGOL DS1302CA数字示波器、DM3064数字万用表及DG系列函数/任意波形信号发生器。   数字示波器应用方案   瞬态响应信号测量   负载瞬变时间是一项动态时间,它是负载电流瞬变后开关电源的输出电压稳定到预先规定稳定
[电源管理]
实例演示,带你深入了解<font color='red'>开关电源</font>测试
基于PWM芯片(UC3842)的医疗开关电源设计方案
摘 要 :基于UC3842高性能电流模式PWM 芯片,提出一种医疗开关电源设计方案。 该设计AC-DC给医疗设备供电,采用单端反激式结构,实现90-264Vac供电,12V的直流输出,具有瞬态响应快、电磁兼容好、 输出电压精度高等优点,能够很好地满足医疗设备供电需求。    0 引言   医疗电源是对安规及EMI、EMC比较高的设备,作为绿色开关电源,将在21世纪给人类社会带来巨大的变化。性能优良的医疗设备系统离不开性能优良的控制模块,而控制模块的性能在很大程度上取决于供电电源的性能,所以高质量的供电电源系统在整个医疗系统中占有相当重要的位置。本文基于UC3842高性能电流模式PWM发生器控制的开关电源适合应用于
[模拟电子]
基于PWM芯片(UC3842)的医疗<font color='red'>开关电源</font>设计方案
由MC33374T/TV构成52W开关电源的电路
由MC33374T/TV构成的15V/3.5A、52W开关电源的电路如图3所示。其交流输入电压u的允许变化范围是92V~276V。VD1~VD4为整流桥。初级保护电路由RC吸收电路(R2、C2)和钳位保护电路(VDZ、VD5)构成,能有效抑制高频变压器漏感产生的尖 峰 电 压 , 保 护MC33374内 部 的 功 率 开 关 管 不 受 损 坏 。VDZ采 用 P6KE200A型 瞬 态 电 压 抑 制 器 ( TVS) , 图 中 阻 容 元 件R1、C3的 序 号 空 缺 , 根 据 需 要 亦 可 将R2、C2的 串 联 电 路 , 改 成 由R1(20 kΩ 、 2 W)和C3( 0.1 μ F、 400 V) 并 联 后
[电源管理]
由MC33374T/TV构成52W<font color='red'>开关电源</font>的电路
μA723控制的开关电源及电路图
电路如图2-25所示,T1和T2组成复合管作为开关调整器件,该电路也工作于自激状态。调整器件受以μA723为核心的电路控制,反复导通与截止,其周期取决于输入电压、滤波电路及负载的大小。 开关电源
[电源管理]
μA723控制的<font color='red'>开关电源</font>及电路图
开关电源原理与设计(连载24)反激式开关电源变压器初级线圈电感量的计算
      反激式开关电源变压器初级线圈电感量的计算       反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为:             (1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载24)反激式<font color='red'>开关电源</font>变压器初级线圈电感量的计算
开关电源波纹的产生、测量及抑制
开关电源纹波的产生 我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,首先要清楚开关电源纹波的种类和产生原因。 上图是开关电源中最简单的拓扑结构-buck降压型电源。 随着SWITCH的开关,电感L中的电流也是在输出电流的有效值上下波动的。所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个。它与输出电容的容量和ESR有关系。这个纹波的频率与开关电源相同,为几十到几百KHz。 另外,SWITCH一般选用双极性晶体管或者MOSFET,不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。这时候在电路中就会出现一个与SWITCH上升下
[测试测量]
<font color='red'>开关电源</font>波纹的产生、测量及抑制
确保方案一次过的DC/DC开关电源的设计秘籍
引言   随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。   负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。   传统的非隔离负电压开关电源的电路拓扑有以下
[电源管理]
确保方案一次过的DC/DC<font color='red'>开关电源</font>的设计秘籍
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved