目前,校园内的LED 公告板的使用越来越多,用于各类通知的宣传和传播,但其控制仍是以单块LED 公告板控制为主流,操作和更新显示屏信息十分不方便。在这种背景下,本设计对目前校园内的LED 公告板系统进行研究和改进,在原有的LED 公告板基础上加入了ZigBee 收发模块,设计了一个基于ARM 器件,使用了触摸屏技术和ZigBee 无线传输技术的校园LED 公告板系统。
1 控制系统的硬件设计
1.1 S3C2440 处理器主控板模块
在此硬件平台上嵌入Linux 实时操作系统,进行校园整个LED 公告板系统的管理和控制。S3C2440 芯片支持触摸屏接口,其包含触摸屏控制器、四个外部晶体管,还有一个外部电压源。触摸屏接口控制,选择控制信号(nYPON、YMON、nXPON、XMON)和模拟引脚与触摸屏面板的引脚和外部晶体管相连。
1.2 PS2 键盘模块
PS2 键盘传输协议是以下面的数据格式进行数据传输的:1 个起始位(总是逻辑0),8 个数据位(低位在前),1 个奇偶校验位(奇校验),1 个停止位(总是逻辑1),1 个应答位(仅用于在主机对设备的通信中)。键盘的发送时序如图2 所示。
1.3 液晶显示器模块
使用了7 寸液晶显示屏, 其视频彩色制式:PAL/NTSC;高清晰度,宽视角,16:9 与4:3 可任意转换;最佳分辨率:800×480; 对比度: 200:1;7 寸液晶显示屏主要用于主控制界面的显示和输入的更新文字的显示。
1.4 四线电阻式触摸屏模块
四线电阻式触摸屏是电阻式触摸屏中应用最广、最普及的一种。其结构由下线路导电ITO 层和上线路导电ITO 层组成,中间由细微绝缘点隔开。当触摸屏表面无压力时,上下线路成开路状态;一旦有压力施加到触摸屏上,上下线路导通,控制器通过下线路导电ITO层在X 坐标方向上施加驱动电压, 通过上线路导电ITO 层上的探针侦测X 方向上的电压, 由此推算出触点的X 坐标,通过控制器改变施加电压的方向,同理可测出触点的Y 坐标,从而明确触点的位置。其等效电路如图3 所示。
图3 四线电阻式触摸屏的等效电路。
1.5 ZigBee 无线传输模块
ZigBee 通信模块选用顺舟科技的SZ05 模块,处理器与通信模块通过RT1_TX 和RT1_RX 引脚连接,在叫号终端中应用的通信模块选用终端节点工作模式(即把通信模块上的DS 引脚接地)。ZigBee 无线传输模块与主控制板的连接如图4 所示。
图4 ZigBee 无线模块与主控制电路连接图。
这里ZigBee 构成一个星型网的网络类型, 发送模式设置为主从模式,波特率选择为9600,数据位设置为8+0+1.
使用ZigBee 无线传输模块实现无线数据显示信息传递与更新, 避免了使用基于中国移动通信运营商的GSM/GPRS 通信网络的数据传输而带来在信息更新时的额外开销费用。
2 系统软件设计
2.1 ZigBee 无线通信协议的设计
由于ZigBee 无线传输模块使用了串口通信,需要设计一个LED 显示屏操作系统的通信协议,保证准确无误地对各个LED 显示屏进行操作和更新。因此规定了其帧格式,如表1 所示。
表1 ZigBee 通信协议的帧格式
①帧头:表示一个帧的开始,内容为FFAA,帧头长度为2 个字节。
②帧长: 表示该数据包不包括帧头在内的帧数据的长度,帧长长度为2 个字节。
③地址标识:每个ZigBee 无线模块的物理地址,包括目的地址和源地址,长度都是1 个字节。
④数据:数据包的内容,长度为0byte~256byte.
⑤奇偶校验:为了降低通信中的误码率,此协议中用了奇偶校验方法,数据位中1 的个数为偶数,校验位为1;数据位中1 的个数为奇数,校验位为0.
2.2 基于Linux 的QT4 开发软件的主界面的设计
QT 软件是诺基亚开发的一个跨平台的C++图形用户界面应用程序框架。它提供给应用程序开发者建立艺术级的图形用户界面所需的功能。QT 是完全面向对象的,很容易扩展,并且允许真正地组件编程。自从1996 年早些时候,QT 进入商业领域, 它已经成为全世界范围内数千种成功的应用程序的基础。QT 也是流行的Linux 桌面环境KDE 的基础。基本上,QT 同Window上的Motif,Openwin,GTK 等图形界面库和Windows平台上的MFC,OWL,VCL,ATL 是同类型的东西,但QT 具有优良的跨平台特性、面向对象、丰富的API、大量的开发文档等优点。
该系统的主界面主要包括以下几方面内容:
①整个LED 显示屏系统的总开关按键图标;
②选择对哪个LED 显示屏进行操作的界面;
③选中的LED 显示屏上显示的内容的窗口;
④选中的LED 显示屏的单个显示屏的开关按键图标和发送按键图标。
3 结语
采用了本系统后, 四线触摸屏技术让控制主界面更加得人性化, 操作者可以在办公室内通过触摸屏显示主界面分时更新多台LED 公告板的显示内容和对各个LED 公告板进行开关控制。使用了物联网中智能家居用的ZigBee 通信模块,实现了校园中多个LED 显示屏的远程控制和显示更新, 组成了一个小型的LED显示屏控制系统。
上一篇:八个维度分析小间距LED的工程显示优势
下一篇:LED显示屏安装生产制作流程
推荐阅读最新更新时间:2023-10-12 22:54
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 恩智浦发布首个超宽带无线电池管理系统解决方案
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 三星 Exynos 2600 芯片前景堪忧:良率挑战严峻,有被取消量产风险
- 苹果搁置反垄断报告的请求遭印度监管机构拒绝,案件将继续推进
- 2024年Automechanika Shanghai海量同期活动刷新历届记录,汇聚行业智慧,共谋未来发展
- 企业文化分享 如何培养稀缺的硅IP专业人员?SmartDV开启的个人成长与团队协作之旅
- 恩智浦发布首个超宽带无线电池管理系统解决方案
- 北交大本科生探秘泰克先进半导体开放实验室,亲历前沿高科技魅力
- 新帅上任:杜德森博士(Dr. Torsten Derr)将于2025年1月1日出任肖特集团首席执行官
- 边缘 AI 如何提升日常体验
- 苹果要首发!台积电宣布2nm已准备就绪
- AMD有望用上全新芯片堆叠技术:延迟大幅减少、性能显著提升