;=========================================
; NAME: 2440INIT.S
; DESC: C start up codes
; Configure memory, ISR ,stacks
; Initialize C-variables
; 完全注释
; HISTORY:
; 2002.02.25:kwtark: ver 0.0
; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode
; 2003.03.14:DonGo: Modified for 2440.
; 2009 06.24:Tinko Modified
;=========================================
;汇编不能使用include包含头文件,所有用Get
;汇编也不认识*.h 文件,所有只能用*.inc
GET option.inc ;定义芯片相关的配置
GET memcfg.inc ;定义存储器配置
GET 2440addr.inc ;定义了寄存器符号
;REFRESH寄存器[22]bit : 0- auto refresh; 1 - self refresh
BIT_SELFREFRESH EQU (1<<22) ;用于节电模式中,SDRAM自动刷新
;处理器模式常量: CPSR寄存器的后5位决定目前处理器模式 M[4:0]
USERMODE EQU 0x10
FIQMODE EQU 0x11
IRQMODE EQU 0x12
SVCMODE EQU 0x13
ABORTMODE EQU 0x17
UNDEFMODE EQU 0x1b
MODEMASK EQU 0x1f ;M[4:0]
NOINT EQU 0xc0
;定义处理器各模式下堆栈地址常量
UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~ _STACK_BASEADDRESS定义在option.inc中
SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~
UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~
AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~
IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~
FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~
;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状
;态执行半字对准的Thumb指令
;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用
;于根据处理器工作状态确定编译器编译方式
;code16伪指令指示汇编编译器后面的指令为16位的thumb指令
;code32伪指令指示汇编编译器后面的指令为32位的arm指令
;
;Arm上电时处于ARM状态,故无论指令为ARM集或Thumb集,都先强制成ARM集,待init.s初始化完成后
;再根据用户的编译配置转换成相应的指令模式。为此,定义变量THUMBCODE作为指示,跳转到main之前
;根据其值切换指令模式
;
;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译
;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.
GBLL THUMBCODE ;定义THUMBCODE全局变量注意EQU所定义的宏与变量的区别
[ {CONFIG} = 16 ;如果发现是在用16位代码的话(编译选项中指定使用thumb指令)
THUMBCODE SETL {TRUE} ;一方面把THUMBCODE设置为TURE
CODE32 ;另一方面暂且把处理器设置成为ARM模式,以方便初始化
| ;(|表示else)如果编译选项本来就指定为ARM模式
THUMBCODE SETL {FALSE} ;把THUMBCODE设置为FALSE就行了
] ;结束
MACRO ;一个根据THUMBCODE把PC寄存的值保存到LR的宏
MOV_PC_LR ;宏名称
[ THUMBCODE ;如果定义了THUMBCODE,则
bx lr ;在ARM模式中要使用BX指令转跳到THUMB指令,并转换模式. bx指令会根据PC最后1位来确定是否进入thumb状态
| ;否则,
mov pc,lr ;如果目标地址也是ARM指令的话就采用这种方式
]
MEND ;宏定义结束标志
MACRO ;和上面的宏一样,只是多了一个相等的条件
MOVEQ_PC_LR
[ THUMBCODE
bxeq lr
|
moveq pc,lr
]
MEND
;=======================================================================================
;下面这个宏是用于第一次查表过程的实现中断向量的重定向,如果你比较细心的话就是发现
;在_ISR_STARTADDRESS=0x33FF_FF00里定义的第一级中断向量表是采用型如Handle***的方式的.
;而在程序的ENTRY处(程序开始处)采用的是b Handler***的方式.
;在这里Handler***就是通过HANDLER这个宏和Handle***建立联系的.
;这种方式的优点就是正真定义的向量数据在内存空间里,而不是在ENTRY处的ROM(FLASH)空间里,
;这样,我们就可以在程序里灵活的改动向量的数据了.
;========================================================================================
;;这段程序用于把中断服务程序的首地址装载到pc中,有人称之为“加载程序”。
;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。每个字
;空间都有一个标号,以Handle***命名。
;在向量中断模式下使用“加载程序”来执行中断服务程序。
;这里就必须讲一下向量中断模式和非向量中断模式的概念
;向量中断模式是当cpu读取位于0x18处的IRQ中断指令的时候,系统自动读取对应于该中断源确定地址上的;
;指令取代0x18处的指令,通过跳转指令系统就直接跳转到对应地址
;函数中 节省了中断处理时间提高了中断处理速度标 例如 ADC中断的向量地址为0xC0,则在0xC0处放如下
;代码:ldr PC,=HandlerADC 当ADC中断产生的时候系统会
;自动跳转到HandlerADC函数中
;非向量中断模式处理方式是一种传统的中断处理方法,当系统产生中断的时候,系统将interrupt
;pending寄存器中对应标志位置位 然后跳转到位于0x18处的统一中断
;函数中 该函数通过读取interrupt pending寄存器中对应标志位 来判断中断源 并根据优先级关系再跳到
;对应中断源的处理代码中
;
;H|------| H|------| H|------| H|------| H|------|
; |/ / / | |/ / / | |/ / / | |/ / / | |/ / / |
; |------|<----sp |------| |------| |------| |------|<------sp
;L| | |------|<----sp L|------| |-isr--| |------| isr==>pc
; | | | | |--r0--|<----sp |---r0-|<----sp L|------| r0==>r0
; (0) (1) (2) (3) (4)
MACRO
$HandlerLabel HANDLER $HandleLabel
$HandlerLabel ;标号
sub sp,sp,#4 ;(1)减少sp(用于存放转跳地址)
stmfd sp!,{r0} ;(2)把工作寄存器压入栈(lr does not push because it return to original address)
ldr r0,=$HandleLabel;将HandleXXX的址址放入r0
ldr r0,[r0] ;把HandleXXX所指向的内容(也就是中断程序的入口)放入r0
str r0,[sp,#4] ;(3)把中断服务程序(ISR)压入栈
ldmfd sp!,{r0,pc} ;(4)用出栈的方式恢复r0的原值和为pc设定新值(也就完成了到ISR的转跳)
MEND
;=========================================================================================
;在这里用IMPORT伪指令(和c语言的extren一样)引入|Image$RO$Base|,|Image$RO$Limit|...
;这些变量是通过ADS的工程设置里面设定的RO Base和RW Base设定的,
;最终由编译脚本和连接程序导入程序.
;那为什么要引入这玩意呢,最简单的用处是可以根据它们拷贝自已
;==========================================================================================
;Image$RO$Base等比较古怪的变量是编译器生成的。RO, RW, ZI这三个段都保存在Flash中,但RW,ZI在Flash中
;的地址肯定不是程序运行时变量所存储的位置,因此我们的程序在初始化时应该把Flash中的RW,ZI拷贝到RAM的对应位置。
;一般情况下,我们可以利用编译器替我们实现这个操作。比如我们跳转到main()时,使用 b __Main,编译器就会在__Main
;和Main之间插入一段汇编代码,来替我们完成RW,ZI段的初始化。 如果我们使用 b Main, 那么初始化工作要我们自己做。
;编译器会生成如下变量告诉我们RO,RW,ZI三个段应该位于什么位置,但是它并没有告诉我们RW,ZI在Flash中存储在什么位置,
;实际上RW,ZI在Flash中的位置就紧接着RO存储。我们知道了Image$RO$Base,Image$RO$Limit,那么Image$RO$Limit就
;是RW(ROM data)的开始。
IMPORT |Image$RO$Base| ; Base of ROM code
IMPORT |Image$RO$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$RW$Base| ; Base of RAM to initialise
IMPORT |Image$ZI$Base| ; Base and limit of area
IMPORT |Image$ZI$Limit| ; to zero initialise
;这里引入一些在其它文件中实现在函数,包括为我们所熟知的main函数
;IMPORT MMU_SetAsyncBusMode
;IMPORT MMU_SetFastBusMode ;hzh
IMPORT Main
;从这里开始就是正真的代码入口了!
AREA Init,CODE,READONLY ;这表明下面的是一个名为Init的代码段
ENTRY ;定义程序的入口(调试用)
EXPORT __ENTRY ;导出符号_ENTRY,但在那用到就还没查明
__ENTRY
ResetEntry
;1)The code, which converts to Big-endian, should be in little endian code.
;2)The following little endian code will be compiled in Big-Endian mode.
; The code byte order should be changed as the memory bus width.
;3)The pseudo instruction,DCD can not be used here because the linker generates error.
;条件编译,在编译成机器码前就设定好
ASSERT :DEF:ENDIAN_CHANGE ;判断ENDIAN_CHANGE是否已定义
[ ENDIAN_CHANGE ;如果已经定义了ENDIAN_CHANGE,则(在Option.inc里已经设为FALSE )
ASSERT :DEF:ENTRY_BUS_WIDTH ;判断ENTRY_BUS_WIDTH是否已定义
[ ENTRY_BUS_WIDTH=32 ;如果已经定义了ENTRY_BUS_WIDTH,则判断是不是为32
b ChangeBigEndian ;DCD 0xea000007
]
;在bigendian中,地址为A的字单元包括字节单元A,A+1,A+2,A+3,字节单元由高位到低位为A,A+1,A+2,A+3
; 地址为A的字单元包括半字单元A,A+2,半字单元由高位到低位为A,A+2
[ ENTRY_BUS_WIDTH=16
andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00 也是b ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样
] ;先取低位->高位 上述指令是通过机器码装换而来的
[ ENTRY_BUS_WIDTH=8
streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea 也是b ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样
]
|
b ResetHandler ;我们的程序由于ENDIAN_CHANGE设成FALSE就到这儿了,转跳到复位程序入口
]
b HandlerUndef ;handler for Undefined mode ;0x04
b HandlerSWI ;handler for SWI interrupt ;0x08
b HandlerPabort ;handler for PAbort ;0x0c
b HandlerDabort ;handler for DAbort ;0x10
b . ;reserved 注意小圆点 ;0x14
b HandlerIRQ ;handler for IRQ interrupt ;0x18
上一篇:lpc1788移植u-boot-2010.03之spi flash移植
下一篇:初试mini2440 nandflash驱动移植