引言
在嵌入式设计中常常会使用LCD屏,现在常用的屏大部分都是高性能的。因为LCD屏的生产厂商很多,标准也不统一,LCD屏往往不能与LCD控制器无粘合连接,所以在使用LCD屏时,厂家还会推荐使用其专为LCD屏是设计的时序芯片,例如,Sharp的LCD LQ035Q7DB02配套的控制器为LZ9FC22;日本的LCD屏是16位色的,本身价格很高,控制器成本也非常高,性能却不见得好,采用高性能的24位真彩色屏是比较理想的,但接口逻辑需要重新设计。
1 RGB565-RGB888的转换
以友达光电AUO生产的A06QU01[1]为例,这是一种24位的TFT真彩屏,分辨率为320×240,每个象素由RGB888表示,其控制时序如图1所示,LCD要求的时序由帧同步(VSYNC)、行同步(HSYSNC)、比特时钟(DCLK)及数据(Data[0:7])构成,帧同步和行同步指示每一帧和每一行的开始。A06QU01每帧240行,每行320个象素,每个像素由依次产生的8b红、8b绿、8b蓝(R1,G2,B3,R4,G5,B6…)构成,所以称为RGB888。
以PXA25x为代表的嵌入式处理器拥有一个LCD控制器,可以将这个控制器配置为最高16位的TFT LCD屏控制器,其控制时序如图1所示,LCD要求的时序由帧同步(VSYNC)、行同步(HSYSNC)、点时钟(PCLK)及数据(Data[0:15]构成,帧同步和行同步指示每一帧和每一行的开始。对于A06QU01,每帧将有240行,每行有320个像素,每个像素由5b红、6b绿、5b蓝构成16位数据,称为RGB565。
将RGB565转换为RGB888要解决2个问题:
1)比特时钟3倍频。LCD控制器每一个像素用一个时钟1次送出16b数据,而LCD屏每个像素需要3个时钟,每次获得8b。这样就需要产生1个3倍于点时钟PCLK的时钟。
2)16b到24b数据分解。在LCD控制器送出16b数据时,需要缓存,并分解出RGB信号分别送出,5b红、6b绿、5b蓝构成16位数据可以采用补0的方法,构成8b红、8b绿、8b蓝。数据高位补0时色彩较柔和,低位补0时彩色较艳丽。
通常情况下,使用模拟锁相环技术可以实现均匀倍频,在这个设计中,3倍频时钟与RGB数据必须同步,否则会出现颜色错位;同时锁相环还需要数据分解电路配合使用,这样一个数字和模拟混合的电路会增加成本,因而特别设计使用了数字电路实现非均匀3倍频。具体方案是:使用一个大于6小于7倍的LCD屏比特时钟作为CPLD的主控制时钟,LCD屏的时钟频率约为7M赫兹,所以选择CPLD的主控制时钟频率为48M赫兹。如图1所示,pclk为控制器输出的点时钟,pdata为RBG565数据,pclkout和pdataout是送往LCD的信号,x7pclk为CPLD的定时时钟,在pclk上升沿将pdata存入缓冲器pdatabuf,并将内部状态位datavalid置位,在x7pclk的上升沿,如果检测到datavalid为高,则使pclkout为低,将缓冲器中的数据取出高5位红色信号,补零后送到pdataout,并将datavalid置为低,在下一个x7pclk的上升沿将pclkout置高,8b数据送出到LCD屏。使用这种方法依次将绿色及蓝色信号送出,在蓝色信号送出后,保持pclkout为高,直到下一个datavalid为高,进入下一次转换,从图1中可以看出,数字3倍频信号pclkout不是均匀的,蓝色数据时钟的占空比不是50%。根据LCD屏数据手册的要求,pclkout的占空比变化容许的范围是40%-60%,因而只要调整好x7pclk的时钟频率,还是比较容易产生符合占空比要求的pclkout时钟的,LCD屏正常工作还需要帧同步(VSYNC)和行同步(HSYSNC)信号,这些信号可以由软件驱动程序编程产生。
2 LCD背光及LCD偏置的电源产生器
LCD屏需要特殊的供电,用于背景照明和LCD偏置,现在使用的小尺寸LCD大多数使用LED作为背光,以及-10V的偏置电压,本设计使用的LCD屏是2路各4个白光LED串联,每路需要的供电电压约为10V,电流为20mA。LCD偏置电压为-10V,电流为3-5mA。这些电源利用LCD控制器内部的电源控制器实现。如图2所示,由L1、V1构成升压型DC-DC转换器,L1为高频功率电感,V1为高频小功率开关晶体管。C4和R1构成的微分电路可以提高V1的导通和关闭速度,有利于提高电源效率,V1由脉冲宽度调制信号控制,在导通期间使用L1存储能量,在关闭时电感向负载释放能量,这样V1的集电极上生成高压脉冲信号,这个信号经过D1、C3和C6整流滤波后得到用于LED供电正电压,同样经过C2隔直流后再整流滤波得到用于LCD偏置的负电压,注意,电容C7是正端接地的。LED电流限制使用图3所示的电路,V3和V4为LED驱动管,V2为电流采样管,V2、V3、V4是3个型号相同的晶体管。这3个晶体管的基级相连,因而基极电压相等。因为型号相同,所以基极到发射极电压近似相等,于是,R3、R6、R7上的压降近似相等,这样R3、R4上的电流被转换为R2上的反馈电压。控制器根据反馈电压自动调整图2中的PWM控制信号的占空比,从而改变输出LED供电电压,使反馈电压稳定在0.6V,通过LED的电流稳定在22mA,LCD偏置电压大约稳定在-10V。
3 数字倍频及数据分解实现
RGB565-RGB888转换器用XC9536实现,如图4所示,来自LCD控制器的信号为:16b数据L_DD0..15、同步信号L_FCLK及L_LCLK、点时钟信号L_PCLK,输出到LCD屏的信号为:8b数据信号LCD_D0..7、同步信号LCD_VSYNC及LCD_HSYNC、时钟信号LCD_DCLK。X7CLK来自于48M赫兹的晶体振荡器,使用Verilog HDL开发。如果连接无误,则上电后加载带有TFT屏驱动的嵌入式Linux内核,一般在LCD屏左上角能看到企鹅图案,如果实际显示的图案位置和色彩不正确,则需要根据实际看到的图像调整LCD控制寄存器中的时序设置,实现正确的显示。
4 总结
由于接口标准不统一、将一个新型号的LCD屏接到嵌入式处理器比较困难,需要认真分析LCD控制器及LCD屏的时序和驱动方式,使用低价可编程逻辑电路,可以实现接口的时序转换,LCD屏需要的背光电源及偏置电源可以按本文所述方法,利用LCD屏内部集成的电源控制器实现,也可以通过外接专用的LCD背光电源和LCD偏置实现。
上一篇:基于AT89C51的激光密码锁的设计
下一篇:基于CMX860的来电显示电话测试仪的设计
推荐阅读最新更新时间:2023-10-18 14:32
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况