利用MEMS技术制作无线通信用RF元件

最新更新时间:2008-07-09来源: 我爱研发网关键字:可变电容器  电极  MEMS  压电薄膜  元件  滤波器  高Q值  RF  ZnO  频率温度系数 手机看文章 扫描二维码
随时随地手机看文章

  最近几年利用微机电系统(MEMS;Micro Electro Mechanical System)技术,在硅晶圆基板表面制作机电结构的技术备受关注,主要原因移动电话与WLAN(Wireless Local Wireless Network)等无线通信,随着宽频化、高频化、全球化的技术进化,高频用射频元件(Radio Frequency devices)成为不可或缺的关键性元件,尤其移动电话的RF单元必需使用高Q值,适合2~5GHz高频的FBAR滤波器(Film Bulk Acoustic Resonator filter)的发展,更是受到通信业者高度注意。有监于此本文要介绍FBAR滤波器(filter)、RF-MEMS开关(switch),以及MEMS可变电容器的制作技术。

  发展经纬

  宽频化后的移动电话面临HSDPA(High Speed Downlink Packet Access)、Super3G、4G等技术挑战,在此同时WLANIEEE802同样面临2.5GHz、5GHz、WiMAX(World Interoperability for Microwave Access)系统高频领域标准化等问题。

  针对2.0GHz以上的高频化需求,除了必需使用频率范围比SAW滤波器更高的FBRA滤波器之外,高频电路的小型化、低成本化、模组化、一体化(monolithic)也是业者必需克服的难题,一般认为在硅晶圆基板表面制作RF-MEMS,可以获得较佳的竞争优势。

  在此同时移动电话与WLAN宽频化后,电路系统的消费电力也随着增加,而且更容易受到多通衰减(multi pass facing)的影响,有效对策例如使用适应型阵列天线(adaptive array antenna)技术等等。然而利用RF元件达成上述技术时,必需使用可变或是可切换元件,因此低损失、低歪斜MEMS元件的发展,受到无线通信业者高度期待。

  有关宽频化方面的进展,虽然多频(multi band)已经行之多年,不过系统切换用开关要求使用低损失、高绝缘、低歪斜的RF开关。

  有关终端高性能方面的进展,国外通信业者正积极开发软体选择「软件无线技术(SDR;Software Defined Radio)」,试图应用在各种移动通信系统,在此前提下如果应用MEMS技术,可望制成可变电容器与可变电感器等无线通信元件。

  

  FBRA滤波器的制作技术

  首先介绍5GHz WLAN用、2GHz W-CDMA用FBRA共振体与滤波器的构造、压电薄膜与电极膜的选择槽穴(cavity)的制作方法,以及低损失宽频化BRA滤波器的设计技巧。

  所谓FBRA是指压电体被施加交流电界时,压电体厚度方向发生振动,利用压电体具备的固有振动特性的共振器而言。FBRA的动作特性与 、 、石英bulk共振体非常类似,不过传统 bulk共振体高频化时有一定极限,无法应用在 等级,必需改用SAW构成的共振体与滤波器。目前SAW元件广泛应用在行动电话,全球市场需求量更高达20亿个以上,FBRA与SAW元件处于相互竞争的局面,不过FBRA具备以下优点:

  ⑴. 无微细图案(fin pattern)容易高频化,电极的耐电力性非常高。

  ⑵. 高Q值(表示共振器的锐利度)构成的共振体与滤波器损失非常低。

  ⑶. 在硅晶圆半导体基板上制作FBRA,RF电路可以一体化。

  如上所述施加交流电界时压电体会自由振动,因此FBRA要求一定空间(cavity)。图1是FBAR与SAW的结构比较,由图可知FBAR的基本结构,分别在硅晶圆半导体基板上制作具备空间的下方电极、压电薄膜、上方电极,整体结构非常简洁。若与SAW的结构比较,SAW必需激振弹性表面波,此外为进行收讯基板表面设置数十根梳状电极,至于电极的数量则取决于共振频率与电极间距 (图1(b))。

  

  

  相较之下FBAR的共振频率是由压电薄膜厚度决定,虽然空间可以利用传统干蚀刻技术制作,不过它属于异方性干蚀方式,为确保预期的空间,制作上会产生所谓的「坏死空间(dead space)」不适合小型化元件加工,而且干蚀刻加工方式不易维持尺寸精度,必需改用可以作深孔蚀刻的Deep-RIE技术,才能够获得小型、高精度的共振器(图2)。

  

  

  压电薄膜通常都使用AIN、ZnO等材料。表1是使用AIN、ZnO压电薄膜的特性比较,由表可知ZnO具有高电气机械结合系数的优点,不过综合考虑音速、频率温度系数、高Q等特性时,研究人员最后决定改用AIN材料。

  材料 AIN ZnO

  电气机械结合系数k2(%) 6.5 8.5

  频率温度系数(ppm/℃) -25 -60

  音速(m/s) 11300 6080

  高Q 良好 控制复杂

  

  表1 压电薄膜的特性比较

  图3是使用AIN与ZnO材料的压电薄膜,5GHz时的共振特性比较,如图所示使用AIN的压电薄膜具有尖锐(sharp)良好的共振特性,滤波器低损失化与宽频化时要求结晶性良好的AIN,尤其是AIN的c轴配向非常好,它对电极薄膜的选择与表面状态是非常重要的要素。

  

  电极材料的要求特性分别如下:

  ⑴.高音响阻抗(impedance)(亦即高杨氏率、高密度)。

  ⑵.低阻抗。

  ⑶.低表面粗糙性。

  因此新世代FBAR的电极使用高音响阻抗Ru材料。Ru质电极表面状态经过平坦化加工,在其上方堆积的AIN可以顺利达成高配向化,若与传统Mo电极材料比较,Ru质电极可以获得高Q值,图4是FBAR的压电薄膜与电极断面构造。

  

  滤波器的设计经常应用在SAW滤波器,图5是梯型(Ladder Type)FBAR滤波器的内部结构,如图所示它是由并联碗型共振器与串联碗型共振器,两者呈阶梯状连接构成,接着使两种共振器的反共振频率接近一致,如此就能够获得良好的频通(band pass)特性。此处为了赋予并联与串联共振器频率差,因此在并联碗型共振器上方制作负载膜,利用它的质量负载效应使频率低于联碗型共振器。此时只要设定连接后的共振器基本区段间段数,控制并联碗型共振器的静电容量比,以及晶片或是封装内配列的电感(inductance)(Lo,Lp),就能够控制滤波器的损失与衰减特性,获得低损失高频通特性的滤波器。

  

  

  研究人员应用上述技术分别开发两种滤波器,分别是北美欧洲地区用5.15~5.35GHz宽频FBAR滤波器,与日本地区用5.15~5.25GHz窄频FBAR滤波器。

  图6是北美欧洲地区用5.15~5.35GHz宽频FBAR滤波器的特性,由图可知该滤波器的损失低于2dB以下,SAW滤波器若与传统陶瓷滤波器比较,不论是损失或是频通都具有非常优秀的特性;有关耐电力特性,FBAR滤波器若与SAW比较,同样具有非常优秀的特性。

  

  图7是研究人员改变制程试作可以内建在2.0×1.6×0.6mm小型封装内的2GHz FBAR滤波器的特性,根据测试结果显示,它可以获得非常优秀的损失与频通抑压特性。

  

  RF-MEMS开关的制作技术

  行动电话内部的GaAs半导体开关,主要功能是切换天线与频域(band),通讯频率越高损失越大,绝缘特性相对降低,歪斜特性则随着增加,整体通信性能明显劣化。根据研究报告指出机械式RF-MEMS开关,在高频范围可以获得低损失、高绝缘以及线性特性。

  图8是典型接触式MEMS开关的基本结构,如图所示它是在设有信号线路的基板制作金属接点形成悬臂(cantilever)结构,利用连动器(actuator)驱动进行开、闭动作,利用薄膜的积层与图案化为主的表面加工制程制成的连动器,整体结构非常简洁,因此成为静电驱动型MEMS开关的主流。

  

  此外制作微米等级的高精度间隙(gap),长膜时要求精密的应力控制技术,一般认为不易实现低损失要求的线路低阻抗化,因此研究人员开发不需要应力控制可以实现低损失的RF-MEMS开关结构(图9)。

  

  新型RF-MEMS开关同样采用静电驱动型悬臂设计,信号线路利用厚膜电镀技术制作,它可以达成低阻抗化要求。具体步骤首先在高阻抗Si的SOI(Silicon on Insulator)表面制作上层硅,接着利用蚀刻技术通过栏栅(slit),去除中间的氧化膜形成悬臂,由于厚质bulk硅的悬臂是由薄膜构成,因此几乎无应力变形问题,而且能够在电镀金属之间形成高精度狭窄间隙。

  此时若对电镀制成的GND电极,与悬臂上方的驱动电极之间施加电压,悬臂受到静电影响会朝上方反翘,前端接点与信号线接触变成ON状态,悬臂同时利用接点支撑,由于悬臂拥有的弹簧系数非常大,因此构造上驱动电极一直到最后,都不会主动与GND电极接触。

  此外驱动电极与GND电极不需要挟持绝缘层,所以不会因为绝缘层charge up(亦即未施加电压状态下出现ON现象)发生误动作,一旦切断驱动电压利用悬臂的弹性,接点会跳脱信号线变成OFF状态。图10是RF-MEMS的电子显微镜照片;图11是编号SP4具备一个输入四个输出的RF-MEMS开关电子显微镜照片,SP4的驱动电压低于10V,属于低电压静电驱动型RF-MEMS开关;图12是上述新型RF-MEMS开关的动作特性,设计目标是2GHz时的损失低于0.3dB,绝缘大于30dB。

  

  

  

  

  MEMS可变电容器的制作技术

  目前大部份的移动电话RF电路单元,包含模拟被动元件在内的频率都被固定,随着移动电话高性能化,市场强烈要求RF模组小型化,同时必需能够支援多频化(multi band),一般认为同一个RF电路如果具备可以支援多频的可变同调功能,就能够大幅抑制电路制作成本与电路规模。接着介绍可以实现可变电容器被动元件的MEMS可变电容器的制作技术。有关MEMS可变电容器的结构,例如平行平板型或是梳状齿形电极,不易同时获得宽广可变容量()与高Q值,此外目前移动电话常用的利用电压控制容量的可变电容器(Varactor),虽然可变容量()非常宽广,不过Q值却不如预期高,因此研究人员决定利用MEMS技术,开发两者兼具的次世代可变电容器。

  图13是次世代MEMS可变电容器的基本构造,如图所示它是利用悬浮在空中的薄膜状上方可动电极,与下方可动电极挟持狭窄间隙,在封密领域形成电容器(Capacitor),此时为了获得大容量,因此在下方可动电极上方制作高诱电率绝缘性薄膜。一般积层薄膜容易残留薄膜应力不易获得平坦形状,必需有效利用电极的反翘特性设计可变结构,具体方法使电容器单元的下方可动电极朝上方弯曲(凸状),其中一部份接近上方可动电极,一旦对上下方可动电极之间施加电压,利两电极之间的静电吸引力使近接部位朝中心移动,两电极之间的间隙变窄电容量也随着改变,电极近接部位产生的静电变大,即使低电压也可以高精度控制电极之间的间隙,实现低电压大容量可变电容器的预期目标。

  

  图14是试作静电驱动型MEMS可变电容器(1.5×1.8mm)的外形;图15是施加电压时的电容量变化特性,根据测试结果显示次世代MEMS可变电容器,5V的驱动电压可以获得宽广容量变化,从0V到5V反覆次连续改变施加电压,它的容量变化几乎完全相同。

  

  为实现高Q值通常必需降低信号线的阻抗损失、基板的诱电损失,不过研究人员发现透过信号线路的最佳化设计、上下方可动电极的中空配置、改用玻璃材质基板等等,可以有效降低上述各种损失,即使2.4GHz也能够获得40左右的高Q值,整体而言次世代静电驱动型MEMS可变电容器的电容可变范围是传统的2倍以上。

  

  结语

  以上介绍次世代高频无线通信不可或缺的关键性元件,FBAR滤波器(filter)、RF-MEMS开关(switch),以及MEMS可变电容器的制作技术。(fengminxing)

关键字:可变电容器  电极  MEMS  压电薄膜  元件  滤波器  高Q值  RF  ZnO  频率温度系数 编辑:孙树宾 引用地址:利用MEMS技术制作无线通信用RF元件

上一篇:通过MEMS来改变面发光激光器的波长
下一篇:MEMS VOA简介与其在国内发展现状

推荐阅读最新更新时间:2023-10-12 23:05

数字形态学滤波器与智能车路径记忆
 引言   “飞思卡尔”杯全国大学生智能车竞赛规则明确指出,智能车在赛道上连续跑两圈,并记录其中最好的单圈成绩,这使路径记忆算法成为可能。如图1所示,赛道记忆算法在第一圈以最安全的速度缓慢驶过一圈,并将赛道信息保存下来,第二圈根据保存下来的信息进行车速和转角决策的相应最优化,从而在第二圈取得好成绩。无论智能车的传感器前瞻距离有多远,在跑圈时它都只能预测在一段有限距离内赛道的情况。而采用赛道记忆算法的智能车,在第二圈时已对整个赛道有了全面的认识,从而在相同条件下,将比不使用赛道记忆的智能车更具优势。     第一圈准确记忆赛道信息是第二圈控制策略的基础,是比赛成败的关键。但是在第一圈中不论控制策略如何优秀,赛车总会
[嵌入式]
Mirrorcle在CES2019展示最新MEMS微镜应用
据麦姆斯咨询报道,基于MEMS的光束控制(扫描)微镜及相关产品的制造商Mirrorcle Technology, Inc.(以下简称Mirrorcle)近日在拉斯维加斯举办的2019国际消费电子展(CES)上展示了其最新应用实例。 照片:Mirrorcle在Microchip(微芯)的CES 2019展台MP26166展示了世界领先的基于MEMS微镜的激光投影系统,图中人物从右到左分别是:Veljko Milanovic博士(Mirrorcle首席执行官)、Donald Humbert(Microchip)、Wafa Iqbal (Microchip)、Daniel Lovell、Abhishek Kasturi Microc
[汽车电子]
Mirrorcle在CES2019展示最新<font color='red'>MEMS</font>微镜应用
基于分布式算法的低通FIR滤波器
0 引言   传统数字滤波器硬件的实现主要采用专用集成电路(ASIC)和数字信号处理器(DSP)来实现。FPGA内部的功能块中采用了SRAM的查找表(lo-ok up table,LUT)结构,这种结构特别适用于并行处理结构,相对于传统方法来说,其并行度和扩展性都很好,它逐渐成为构造可编程高性能算法结构的新选择。    分布式算法 是一种适合FPGA设计的乘加运算,由于FPGA中硬件乘法器资源有限,直接应运乘法会消耗大量的资源。本文利用了丰富的存储器资源进行查找表运算,设计了一种基于分布式算法低通FIR滤波器;利用线性相位FIR滤波器的对称性减小了硬件规模;利用分割查找表的方法减小了存储空间;采用并行分布式算法结构和流水线技
[嵌入式]
DC/DC电源中的纹波抑制设计
0 引言 开关电源以其体积小、效率高等优点在通信设备中得到了广泛应用。但对于输出电压纹波要求较小的场合,传统开关电源设计的输出电压纹波较大,已不能达到设计要求。而通过采用本文的有源滤波器及其前端加入LC低通滤波器网络的方法,则能够对纹波进行有效抑制,从而达到设计所需要的指标。实验结果表明,该方法具有一定的理论与实际意义。 1 有源滤波器原理 有源滤波器的设计原理图如图1所示,图中采用了一个运算放大器、四个电阻和两个电容来构成有适当阻尼的二阶有源低通滤波器。 利用理想运放的分析方法,求得该电路的频率特性函数为: 一般情况下,根据二阶低通滤波器的频率特性函数为: 通过上式可以求出该有源滤波器的一些参
[电源管理]
DC/DC电源中的纹波抑制设计
派更半导体公司推出100瓦RF SOI功率限幅器
据eeworld网报道,RF SOI(射频绝缘体上硅)的发明者及先进射频解决方案的先驱派更(Peregrine)半导体公司宣布推出单片100瓦功率限幅器UltraCMOS® PE45361。作为派更半导体公司功率限幅器系列产品的新一代成员,PE45361建立在备受好评的50瓦UltraCMOS功率限幅器取得极大成功的基础之上,并添加了更高的脉冲功率处理能力、更低的限幅阈值及正向阈值控制功能。UltraCMOS功率限幅器提供了一种取代砷化镓(GaAs)分立PIN结二极管功率限幅器的单片式方案,可保护设备不会受到过高RF功率、故意干扰及ESD事件的损害。PE45361能够为测试与测量设备及无线基础架构收发器中的敏感低噪声接收机提供可靠
[半导体设计/制造]
ADI推出战术级MEMS陀螺仪,性能匹敌光纤陀螺仪
中国,北京—Analog Devices, Inc. (ADI),全球领先的高性能信号处理解决方案供应商,最近正式全面推出ADIS16136战术级iSensor®数字MEMS陀螺仪 ,其典型零偏稳定度为3.5o/小时,采用火柴盒大小的模块封装,功耗低于1 W,重量仅25克。新款战术级(零偏稳定度低于10o/小时)iSensor MEMS陀螺仪,无需用户配置就能产生精密准确的速率检测数据,使得快速开发平台稳定控制、导航、机器人、医疗仪器仪表等对精度要求非常高的应用成为可能。 ADI公司MEMS/传感器技术部iSensor业务开发经理Bob Scannell表示:“与昂贵的光纤陀螺仪相比,ADIS16136 MEMS陀螺仪的稳定度和角
[传感器]
技术文章:压力传感器元件压力测量方法
压阻传感器的高精度及其测量绝对压力、表压和压差的能力使其在广泛的用途中得到了各种应用。 对于工业设备和机械,压力传感器提供的信息可以用于最有效地操作液压或气动设备,进而与新的工业4.0标准联系在一起。 汽车对燃料效率和减少有害排放的要求越来越高,需要长期稳定和高度精确的传感器。除了介质电阻外,一些用途要求压力传感器具有抗冻性,但最重要的是传感器需要在整个寿命期间提供可靠的信号。 所有的用途都对压力模具的独特特性提出了越来越高的要求,需要在模具水平上具有特定的设计特点。已经开发了TDK压力传感器的产品系列,重点是提高灵敏度、高性能和较小的模具尺寸。此外,还特别注意介质电阻和易处理能力的具体特点。 压阻压力传感方法
[传感器]
技术文章:压力传感器<font color='red'>元件</font>压力测量方法
基于射频识别系统的车身储运线信息管理
前言   近年来,随着制造业自动化水平的快速提高和迅猛发展,生产线的信息管理重要性体现得越来越强。产品的多样性、生产工艺的复杂性和产品更新换代节奏的加快,决定了生产信息管理手段和方法的不断提高。   信息管理的基本条件是:生产线上的产品具有可以标明“自己身份”的信息载体,只有正确识别出产品类型、品种等信息,才能完成生产过程的流程控制,实现各种信息管理。作为信息载体比较常见的有条形码、射频识别系统RFID (Radio Frequency Identification)等。射频识别系统中的载码体(TAGS),也常被称作电子标签。和条形码等其他信息载体相比,电子标签具有数据可读可写;误码率低;耐高温;耐腐蚀;无需光学可视等
[应用]
小广播
最新传感器文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved