用音频信号实现无线传感器网络节点间距测量

最新更新时间:2009-10-12来源: 互联网关键字:2.4G  音频信号  无线传感器 手机看文章 扫描二维码
随时随地手机看文章

  利用音频信号实现节点间距自主测量的无线传感器网络节点系统。本系统包括dsPIC6014A微控制器、512 KB的SRAM,2.4 G波段的RF收发模块、音频收发模块及电源管理模块等。通过测量RF同步信号与音频信号的时间差来测量节点间的间隔距离,节点利用多次测量数据累加平均及IIR数字滤波技术提高了测距信号的信噪比,用幅度检测实现了测距信号的到达时刻判别。测试数据表明,该节点最远测距距离可达30 m,误差小于3.5%。

  1 引 言

  利用音频信号实现节点间距自主测量的无线传感器网络节点系统。本系统包括dsPIC6014A微控制器、512 KB的SRAM,2.4 G波段的RF收发模块、音频收发模块及电源管理模块等。通过测量RF同步信号与音频信号的时间差来测量节点间的间隔距离,节点利用多次测量数据累加平均及IIR数字滤波技术提高了测距信号的信噪比,用幅度检测实现了测距信号的到达时刻判别。测试数据表明,该节点最远测距距离可达30 m,误差小于3.5%。

  节点间隔距离测量所利用的参量主要有:

  接收信号强度(RSS)、信号时间差(TPOA)、角度量(AOA)/信号到达方向(DOA)。其中,对RSS和射频加超声波测距的研究较多。射频信号的传播衰减和众多参数相关,如初始发射功功率、天线距离地面的高度、反射、载波频率等等,不进行校验时,误差可能超过50%。射频加超声波定位采用的超声波频率为40kHz,存空气中的衰减特性决定了测距距离一般不超过10 m,方向性强,适合室内使用。声波在空气巾的衰减随着频率的降低而减少,在数kHz时,利用低成小的商业音频收发技术就能实现数十米范围内的距离测量,是一种实现远距离高精度定位的有效技术。文献[1,6]介绍了利用伪随机码+DSP相关处理实现厘米级的声源定位精度,系统结构复杂。文献[5]的工作与本论文研究工作相近,采用通用的Mica2节点平台,用大功率声发射器及模拟锁相环实现了音频测距信号检测。

  比较成熟并已经商业化的节点是由美国加州大学伯克利分校研制的Mica系列和Telos节点。这些节点仅提供了一个基本硬件平台,必须采用专用接口板才能实现其他功能的扩展。本论文研究目的是探索一种可以在野外使用,具有远距离高精度自定位的节点硬件系统。设计一种全新的节点结构。

  2 节点硬件系统设计

  基于上述考虑,实现的节点结构如图1所示。节点采用Microchip公司的dsPIC6014A单片机,它内置了12位ADC和8 KB的RAM,16位的指令操作和I/O控制,支持C语言编程和部分DSP功能,时钟、功耗控制灵活,能在3~5 V的电压范围工作,3.3V时的最高运行速度20 MIPS。节点配置了一片512KB的SRAM。dsPIC6014A的一个16位端口被用作SRAM地址总线的低位,高3位由另外的3个I/O位控制,8个子存储空间被用于保存采集到的音频信号数据和进行数字信号处理时的临时数据。

  射频收发模块采用nRF24L01,通过SPI接口和CPU进行数据交换。音频信号发生器采用市售标准的压电蜂呜器,经过对自然界的噪声频谱测试及统计分析,发现多数的音频信号频率集中在20~3000 Hz,因此,蜂鸣器的中心频率选择为3000 Hz,声压大于90 dB。音频接收传感器为驻极体式麦克风,两级放大器增益约60 dB,为了提高抗干扰能力,节点中增加了一个中心频率为3000 Hz的二阶巴特沃斯带通滤波器,电路结构如图2所示。电路实测结果:中心频率3000 Hz,-3 dB带宽约为987 Hz。

  节点采用1节3.7 V锂离子可充电电池作为电源,在休眠期内关闭一切不工作单元的电源供给以实现节能。一个由RTC(实时时钟)控制的电源管理单元进行各级电源分配和管理。系统上电后,电源管理单元被置为有效状态,CPU对RTC进行唤醒时刻设置,工作完成后,CPU关闭电源管理单元输出,此时只有RTC和电源管理单元在工作,功耗为12 μW,当预定的唤醒时刻到来时,RTC输出一个中断信号,开启电源,节点进入工作状态,如此重复,实现了节点工作和休眠周期的控制。节点的独特之处是通过利用RTC所具有的数分钟到数天时间的定时中断设置功能实现了节点的运行与休眠周期灵活控制,实现了低功耗设计。

  在室外利用音频信号测距时,大气温度、风速及风向对声速有一定的影响,节点上实现风速测量目前还存在较大的技术障碍,低风速时温度的影响是主要的,这里采用公式c=331.4+0.6T来补偿声速,式中T为大气温度(℃)。温度传感器为Maxim公司的DS1624,具有标准的I2C接口。

  3 测距信号到达时刻算法

  本文提出了一种基于数字整流处理的测距信号TOA估计方法,其基本原理是通过对测距信号进行数字信号处理,获取具有较高信噪比的测距信号幅值变化信息,再通过幅度变化趋势分析实现TOA的估计。它包括以下处理过程:

  (1)测距信号的信噪比。测距信号可以表述为:f(t)=Av+Assin(ωst+φs)+N(t),Av为信号采集后产生的直流分量,N(t)为随机分布的噪声。根据信号分析理论,提高信噪比可以采用数字滤波或者多次采样累加后求平均值的方法。考虑到节点的运算能力及硬件结构,采用4次采样再求平均值的方法。

  (2)去除直流分量。对f(t)求平均值Av,再进行减法处理,滤除信号中的直流分量,使之成为交流信号j(t),音频测距信号是交流信号,滤除直流分量有利于后续处理过程中分离出较大的测距信号幅度。

  (3)数字全波整流。经过(2)处理后的信号是正负变换的双极性信号,再进行z(t)=| j(t) |处理,即数字全波整流,变换为正的单极性信号。

  (4)低通滤波。利用二阶IIR低通滤波器对z(t)进行数字滤波处理,得到一个与z(t)包络线相似的信号b(t)。

  (5)对b(t)进行幅值变化趋势分析。在测距信号开始出现的数据段,相邻数据点的幅值差较大,而且是连续递增的(通过试验可以确定连续递增的最小数据个数),找出幅度连续增加的起始点n(i),即为信号到达时刻点,如图3所示。

  4 试验结果

  试验用的测距信号为单频率正弦信号,频率为3000 Hz,采样频率23.8 kHz,采样长度为 4096点(12位ADC)。图3是原始信号波形及数据处理过程中的数据波形。对于原始信号,直接利用信号的幅度或者频率来判别测距信号的起始点存在很大误差或者无法识别,而利用本文所述的方法可以获得精度较高的信号起始点。在系统时钟为10 MHz时,整个计算过程约耗时1.5 s,可以满足静态或者慢速移动节点的定位需求,在30 m处的测距最大误差约3.5%。

  5 结 论

  实现了一种具有音频定位功能的无线传感器网络节点,它具有独立的RTC+电源管理单元设计,实现了低功耗休眠,可以实现30 m远的节点间距测量。提出用单片机实现的测距信号TOA估计方法,可以获得较高的到达时刻估计精度,为实现高精度的节点定位提供了一种有效的方法。该节点可用于构建应用于森林、农田等远距离节点间距的无线网络。

关键字:2.4G  音频信号  无线传感器 编辑:冀凯 引用地址:用音频信号实现无线传感器网络节点间距测量

上一篇:基于CC2430的无线传感器网络的实现
下一篇:无线传感器网络在智能交通系统中的应用

推荐阅读最新更新时间:2023-10-12 23:05

基于无线网技术的区域家庭防盗报警系统设计
引言 近年来,随着生活水平的提高,家庭住宅面积不断扩大,居住环境越来越好,人们的居住质量有了明显的改善。同时,科技的日新月异带动了电子类产品的快速发展,尤其是家用电子类产品已经成为人们生活必不可少的一部分。为家庭和小区用户提供安防保障的家庭防盗报警系统也已走近人们的家庭。   本系统利用单片机控制技术、无线传感器网络技术和GSM移动通信技术,实现一种具有联网功能的智能防盗系统。该系统采用GSM移动通信技术,可以使小区安防人员和用户及时收到报警信息,在第一时间赶赴现场,从而使用户损失降到最低。采用无线数据传输方式,可以轻松组网。报警网络可大可小,小到家庭独立使用、小区组网,大到地区组网。采用无线数据传输方式,不需
[安防电子]
基于无线网技术的区域家庭防盗报警系统设计
分级有序路由无线传感器网络的研究与测试
  引言   无线传感器网络是将大量传感器节点采用规则或随机方式部署在监测区域,通过无线通信自组织方式所构成的网络。传感器网络在军事侦察、环境信息检测、农业生产、医疗健康监护、建筑与家居、工业生产控制以及商业等领域有着广阔的应用前景。   研究发现,无线传感器网络与传统无线网络的设计目标和标准具有明显不同的要求,后者注重在移动的环境中通过优化路由和充分利用带宽为用户提供质量较高的服务,而前者常常工作在人无法接近的恶劣环境中,无法更换能源和重复利用网络节点,因此高效能、低成本、自组织等问题是无线传感器网络首先要解决的。   本文研究并设计实现了一种无线传感器网络,采用低功耗的MSP430F149作为主控芯片和nRF9
[测试测量]
分级有序路由<font color='red'>无线传感器</font>网络的研究与测试
UWB的无线传感器网络的定位技术
  在很多无线传感器网络(WSN)应用中,没有节点位置信息的监测往往毫无意义。当监测到事件发生时,关心的一个重要问题就是该事件发生的位置,如森林火灾监测,天然气管道泄漏监测等。这些事件的发生,首先需要知道的就是自身的地理位置信息。定位信息除了用来报告事件发生的地点外,还可用于目标跟踪、目标轨迹预测、协助路由以及网络拓扑管理等。因此节点定位问题已成为无线传感器网络的一个首要解决的问题。   1 问题描述   超宽带(Ultra WideBanol,UWB)通信技术是一种以ns级的冲击脉冲在短距离内高速传输数据的无线通信技术。这种通信技术具有隐蔽性好、穿透能力强、定位精度高以及功耗低等特点,在无线传感器网络的测距、定位应用
[工业控制]
汽车无线传感器的研究与设计
0 引言 在汽车驾驶和车辆诊断方面一般都会用到射频技术(RF)。按照国际标准的要求,所有车辆的技术应用必须经过详尽的测试,而这些测试都要基于合理的涉及感测数据采集的实证实验。因此在汽车行业,无线传感器网络的发展是伴随着典型传感器和射频设备的发展而发展起来的。对于汽车测试环境,无线传感器有三个方面的优势:第一是体积小,无线传感器不需要电缆端口;第二是节约时间,无线传感器节约了将所有传感器连接到电源和数据线的时间,因此无线传感器可以更快速地展开和轻松地移动,这样一来既提高了感测数据的空间分辨率又改善了传感器网络的故障容差;第三是在驾驶测试期问,连同传感器一起可以安全地塞进驾驶舱的数据线的数量得到了限制。 本文具体结构如下:
[单片机]
汽车<font color='red'>无线传感器</font>的研究与设计
基于MSP430F1611单片机的音频信号分析
  本系统将采用集成有μC/OS-Ⅱ操作系统的单片机,利用快速傅里叶变换并加窗函数的方法来实现对音频信号各项参数的分析。   1 系统总体方案   信号首先通过8阶有源巴特沃兹滤波器进行抗混叠处理,然后通过放大衰减,电平搬移缓冲网络后,送单片机处理。   系统的2片MSP430F1611单片机,一片负责对模拟信号进行采样,并对采集得到的信号进行4096点的FFT计算,另一片负责控制显示设备以及完成对信号功率谱,周期性,失真度的分析。   系统的总体方框图如图1所示。      2 系统各硬件设计   2.1 抗混叠滤波器的设计   根据Nyquist定理,AD模数转换
[单片机]
基于MSP430F1611单片机的<font color='red'>音频信号</font>分析
锂亚硫酰氯电池,无线传感器网络电源新选择
  面向监测建筑物的劣化情况及耕地环境的无线传感器网络系统的电源用途,有一种在耗电量极小的情况下可使用10年的电池备受关注,那就是锂亚硫酰氯电池。这就意味着锂亚硫酰氯电池的自然放电极少,即便放置10年,依然可以正常使用。而一般大多数电池在没有负载的情况下也会自然放电,几年之后便无法使用了。而且,这种电池的价格比利用热量、振动及光能等发电的能量采集设备更便宜。   锂亚硫酰氯电池。 图片:东芝家电   “目前主要是使用锂亚硫酰氯电池作为无线传感器网络的电源”,大型半导体厂商凌力尔特科技的日本子公司——凌力尔特科技日本的地区统括销售经理小林纯一这样说道。无线传感器网络在广大范围内铺设传感器、以无线方式发送温度等环境数据。作为其电源,
[电源管理]
锂亚硫酰氯电池,<font color='red'>无线传感器</font>网络电源新选择
无线传感器网络节点低功耗系统设计
1.1 便携式模块节点硬件低功耗设计 (1)处理器选择 ATmega324p为一个功能强大的单片机,为许多嵌入式控制应用提供了灵活而低成本的解决方案: ①TQFP(薄塑封四角扁平封装),体积小,集成度高; ②6个可通过软件进行选择的省电模式; ③最高达到20MIPs的吞吐率(在20 MHz下)。 (2)接口电路低功耗设计 接口电路的低功耗设计,往往是容易被忽略的一个环节。在这个环节里,首先要选择低功耗的外围芯片,然后根本的方法是使接口电路的常态处于低功耗状态。另外,还要考虑以下两个因素: ①上拉电阻/下拉电阻的选取。在能够正常驱动后级的情况下,尽可能选取更大的阻值。另外,当信号在多数
[单片机]
采用LabVIEW和NI无线传感器网络监测名胜古迹
西班牙,阿吉拉尔场(Aguilar de Campo)的Santa María la Real基金,为Santa María de Mave教堂及其修道院开展了一项修复工程,这座教堂可以追溯到12世纪。项目由Castile 和 León地方政府通过Románico Norte计划提供资金,来支持Santa María la Real基金和遗产监测系统计划(MHS)。本地行动小组País Románico也通过环境农业渔业部的开发计划为Santa María la Real基金和遗产监测系统计划筹措资金。 在这座具有历史意义的教堂改造完成后,基金会意识到遗迹需要连续监测从而保护教堂不受环境衰退的侵害。因此,小组开发了一套实
[工业控制]
小广播
最新传感器文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved