基于虚拟仪器的浊度测试系统的设计方案

发布者:qiuxubiao最新更新时间:2009-11-09 来源: 大同大学关键字:虚拟仪器  浊度测试系统 手机看文章 扫描二维码
随时随地手机看文章

  0引言

  浊度是工业水处理(除盐水)检验水质要求的一个重要参数,对除盐水的水质要求较高。目前,浊度的测定大部分都是停留在传统仪器的模式下,没有摆脱独立使用,手动操作的模式。随着科技的迅猛发展,计算机强大的处理能力,虚拟仪器在测定系统中正被广泛采用,它可以利用虚拟仪器的多面板能满足多功能的测量要求,同时提高检测的精度和可靠性;利用虚拟仪器良好的人机交互性和在线帮助功能使测量具有很大的灵活性,操作简便。将测试结果图形化形式显示出来,使测试的结果更加直观明了;随着计算机网络的发展,虚拟仪器还能满足今后更多功能的扩展和网络互联的要求。基于此设计了基于虚拟仪器的浊度测试系统,利用LabVIEW图形化的编程语言和编程环境,实现了对浊度数据的显示、标定和报警等功能。

  1系统的硬件设计

  1.1测量电路的设计

  中央处理器采用C8051F020。C8051F单片机是完全集成的混合信号系统级芯片(SoC),具有与8051兼容的高速CIP-51内核,与MCS-51指令集完全兼容。片内集成了数据采集和控制系统中常用的模拟、数字外设及其他功能部件,内置FLASH程序存储器、内部RAM。C8051F单片机还具有片内调试电路,通过4脚的JTAG接口可以进行非侵入式、全速的在线系统调试。放大后的信号由C8051F020内的交叉开关选通,调节增益后送ADC0进行A/D转换并存储。

  1.1.1主控制板电路

  主控制板电路实现数据的采集、存储、处理和输出功能。它由C8051F020单片机处理电路、传感和模拟信号处理电路、AT45DB081数据存储电路、DS18B20温度监控电路、RS232通信电路、液晶显示和键盘电路、报警电路、标准4~20mA工业信号输出电路几部分构成。浊度仪的核心控制器件是Cygnal公司新出产的混合信号系统级单片机C8051F020。在一个标准的8051中,除MUL和DIV以外所有指令都需要12或24个系统时钟周期,并且通常最大系统时钟频率为12MHz。而对于CIP-51内核,70%的指令执行时间为1或2个系统时钟周期,没有执行时间超过8个系统时钟周期的指令。可见C8051F020单片机的指令执行速度是标准8051单片机的10倍,因此测量时间非常短,可以满足在线实时测量的要求。该单片机片内集成了Cygnal公司独创的CIP-51的CPU内核,指令系统与MCS-51完全兼容。它具有如下特点:集成度高、抗干扰能力强、速度高、可靠性高、扩展功能强等。本仪器中选用C8051F020单片机,可以使电路在设计上结构紧凑,并能够提高仪器的抗干扰能力。C8051F020的原理图如图1所示。

[page]

  1.1.2传感和模拟信号处理电路

  光电转换元件采用的是TCZ6×6型硅光电池,此种型号硅光电池的光电特性,其短路电流与入射光强有良好的线性关系。但是其转换信号仅为10-7A数量级,必须进行放大处理,因此,在电路设计中采用了输入阻抗高的运算放大器LF353来获取电流信号,并进行滤波放大处理。如图2所示。

  1.2C8051F020与虚拟仪器的实现

  串口通信虽然传输速度较慢,但是由于简单易行,并且现有的微机都具备串行通信口,因而得到了广泛的应用。本文在浊度测试系统中利用串口实现了对单片机的通信控制。

  1.2.1系统硬件配置

  本文通信系统采用C51F020作为下位机,PC机作为上位机,二者通过RS232串口接收或发送数据和指令。传输介质为二芯屏蔽电缆。RS232信号和单片机串口信号的电平转换采用MAX232,它是具有双驱动器、双接收器的通信器接口电路,不需外接电容而进行倍压及电压极性转换,只需+5V供电,电源电流为5mA,传输率为200Kb/s。串行接口电路原理见图3。

  系统中PC机承担主控任务,负责该测控系统的通信参数设定、数据的采集处理及对单片机运行的控制,程序采用LabVIEW编写。其通信协议为:采用RS232异步通信方式,51单片机串行口共有4种工作方式,这里采用单片机串口通信的方式1,该方式为8位异步串行通信方式,其波特率是可变的,1位起始位,8位数据位,1位停止位,无奇偶校验,若晶振频率为11.0592MHz,取波特率为4800Kb/s。下位机按接收到的指令工作,若主控机发出无效或错误指令,将不作任何控制。

  1.2.2程序设计

  主机通信程序:在主机通信程序设计中,采用图形化语言LabVIEW作为编程语言。它把高级语言中的函数封装为图形功能模块,图标间的连线表示各个功能模块之间的数据传递。编程方式简单、直观、便于使用。串口通信功能模块包括串口初始化模块、串口读模块以及串口写模块,通过这些模块就可以实现对单片机的控制。

  LabVIEW串口子VI是通过RS232实现数据通信的。LabVIEW串口子VI共有5个串行通信节点,分别实现串口初始化、串口写、串口读、检测串口缓存、中断等功能。

  C8051F020单片机的程序采用汇编语言写成。利用汇编语言直接对相关硬件进行操作,具有开销小、效率高的特点。在编写单片机程序时应当注意的是必须保证PC机与单片机串口通信时的波特率一致。如果两者不同的话,就无法进行数据的传输而导致通信失败。所以,在单片机程序中初始化时应当根据单片机晶振和串口通信方式对寄存器进行设置。[page]

  2软件开发

  该系统由C8051F单片机、ADC0809A/D转换器组成的小系统作为前端数据采集系统,并通过RS232串行总线将采集到的数据传送到PC机,用Lab-VIEW进行数据的接受与处理。其结构组成如图4所示。

  2.1菜单设计

  在整个程序设计中,首先完成了各子功能(子VI)的程序,将其做成单个模块,每个单个模块是由更小的模块组成,每一级的模块均刻以图标形式放置在程序流程图中,这样增加了程序的可维护性和可读性,使流程图更加清晰明了,同时避免了大量重复编程工作。系统的主界面设计中,利用LabVIEW中提供的EDITMENU菜单,先将要实现的功能作为菜单选项的内容,以便在运行时调用,然后在框图中对各项菜单的调用通过CASE循环进行选择,使各项菜单对应于各项子VI,在各子VI中visetup的executionoptions中选定showfrontpanelwhencalled选项,这样在运行中,当选择了菜单中的某些内容时,该子VI就被选中调用。图5为菜单后面板程序设计流程图。菜单中包括文件操作(读取、存储、打印)通道显示和信号分析以及帮助,程序分别调用相应功能的子VI程序,完成相应操作。下面简要介绍本采集程序中采用的几个典型模块。

  2.2数据采集模块设计

  本设计采用VISA编写仪器控制程序,程序在运行时VISA就会根据实际接口类型自动调用相应的接口驱动程序例程,完成通信操作。串口通信模块包括串口初始化模块、串口写模块、串口读模块,通过这些模块就可以实现对单片机的控制。图5为串口设置后面板程序框图。如图5所示,主程序运行后,设置串口波特率为9600,通道选着串口1,采用默认通信协议(1位起始位、8位数据位、1位停止位),串口缓存大小设置为16368B。[page]

  2.3保存模块设计

  本设计采用Access数据库对采集的数据进行分析及对历史数据查询回放,其特点表现在:关系数据库的SQL语言是非过程性语言,对数据的查询或操作简单;利用数据库管理数据,数据的独立性好;Access数据库使用方便,操作简单,能够满足数据库管理的需要。利用LV的ActiveX功能,调用MicrosoftADO控件,既可以利用SQL语言又可以利用ADO提供的各种方法和属性,方便灵活地实现对Access数据库访问。在LV功能模块中含有ActiveX子模板,子模板中包含用作与ActiveX服务器相连接的自动化节点函数,实现对数据库的操纵。ADO主要有三个主体对象,分别为Connection,Command和RecordSet对象。访问数据库步骤为:连接到数据源一指定访问数据源的命令一执行命令。本设计建立两个数据源分别用来存放历史数据、报警数据及相对应的时间。

  3软件实现功能

  利用LabVIEW这种图形化的编程语言和编程环境,实现了对浊度数据的显示、标定和报警等功能。浊度实时数据趋势图、历史数据趋势图、历史数据查询和报警历史记录分别如图6所示。

  实时曲线是通过调用LV软件中Chart子模板来实现的。它将数据在坐标系中实时、逐点(或一次多个点)地显示出来,可以反映被测物理量的变化趋势,与传统的模拟示波器、波形记录仪的显示方式相仿。在实时曲线界面中,有单片机采集数据及向LV发送数据的控制按钮,可以方便地实现对下位机数据的采集控制。另外,该模版具有上限、下限报警监视、报警限设定功能,当数据发生报警后,实时值字体显示颜色立即发生改变,可以方便用户对数据进行监视。

  历史曲线是通过调用LV软件中Graph子模板来实现的。用户可以调整XScale及YScale显示方式,如显示时间刻度、数据显示格式、显示刻度是否自动缩放、曲线颜色等。通过游标(如图6(b),Cursor),可以读取波形上某一点的确切坐标值。历史曲线界面还具有历史曲线查询及历史趋势刷新功能。点击“历史曲线查询按钮”,可以弹出“历史趋势查询”子VI模板,用户根据需要设定查询时间,便可得到需要的数据以便分析。点击“历史趋势刷新”按钮可以直接显示当前历史趋势。

  历史报警表调用LV中Table控件进行显示。表中有报警序号、报警名称、报警值、报警进入时间以及状态显示项目。该表记录了高限、低限时报警值及恢复正常值的时间及报警值,通过滚动条用户可以方便查询报警历史数据。

  4结语

  本文使用了C8051F单片机进行前端的数据采集,通过RS232串口实现与LabVIEW的强大的信号分析处理功能实现了浊度的历史数据、实时数据的查询和分析,同时设计了实时报警,当浊度超过某个值时迅速报警。实践证明,采用虚拟仪器不论是在技术上或是在经济上都能够取得良好的效果。

关键字:虚拟仪器  浊度测试系统 引用地址:基于虚拟仪器的浊度测试系统的设计方案

上一篇:NI:测试测量行业的发展趋势浅析
下一篇:NIDays 2009图形化系统设计盛会中国站落幕

推荐阅读最新更新时间:2024-03-30 22:09

基于虚拟仪器的液位控制系统的研究与设计
  虚拟仪器可以由多种接口(如GPIB、VXI、PXI等)或具有这些接口的仪器,来连接构成被测控对象和计算机。虚拟仪器的结构如图1所示。   虚拟仪器系统包括仪器硬件和应用软件两大部分。仪器硬件是计算机的外围电路,与计算机一起构成了虚拟仪器系统的硬件环境,是应用软件的基础;应用软件则是虚拟仪器的核心,在基本硬件确定以后,软件通过不同功能模块即软件模块的组合构成多种仪器,赋予系特有的功能,以实现不同的测量功能。   图1 虚拟仪器结构   虚拟仪器硬件连接被测对象和计算机。根据不同的接口类型,虚拟仪器硬件结构包括数据采集系统、GPIB仪器控制系统、VXI仪器系统等不同部分。   虚拟仪器软件体系结构VISA(Virtua
[测试测量]
基于<font color='red'>虚拟仪器</font>的液位控制系统的研究与设计
基于虚拟仪器的PLC监控系统设计
  0 引言   在过程控制中,由于工业现场非常分散,I/O点数众多,各种仪表的工作环境非常恶劣,采用数据采集卡和LabVIEW开发平台来完成现场的数据采集和控制显然不可取。考虑到过程控制中的过程参数变化不是很快,而PLC恰恰可以克服数据采集卡在过程控制中的不足,并且具有较高的性价比,因而采取以PLC为下位机,以装有LabVIEW软件的工控机为上位机开发平台。通过RS-232和RS-485串口与PLC通信,实现对工业现场的监控与现场数据的分析。本文根据这个思想设计了一个工业远程监控系统,上位机采用PC机,下位机采用西门子PLC S7-200。介绍了一种在LabVIEW 8.6平台上开发PC机和PLC实时监控的软件的编程方法,在此
[测试测量]
基于<font color='red'>虚拟仪器</font>的PLC监控系统设计
自制便携式虚拟仪器的一种快速实现方法
   1. 引言   随着计算机软硬件技术和信号处理技术的迅速发展,不仅使得已经提出多年的虚拟仪器成为现实,并且逐步得到日益广泛的应用和广大科学工作者以及工程人员的青睐。总的来说,虚拟仪器是计算机软硬件技术的产物。与传统仪器相比,它改变了以往的按钮、按键和旋钮等的操作方式和简单的显示界面,虚拟仪器借助于 PC计算机WINDOWS操作系统强大的图形功能,使人机交互的操作更加友好和便捷;对于数据处理,应用计算机软件的强大功能可以灵活地选择所需要的算法处理(数字滤波、统计分析和数值计算),而不像传统仪器那样,其数据处理功能固定。   目前,国内外许多公司(比如美国的NI公司)都有相当优良的虚拟仪器产品,然而其价格之高,让我们这些高校
[测试测量]
自制便携式<font color='red'>虚拟仪器</font>的一种快速实现方法
基于虚拟仪器技术的705D雷达自动检测系统
探讨利用虚拟仪器技术,通过编制特定的测试软件,实现对705D雷达天控、轴角、测距分系统,发射控制板和三路+15V电压的16个重要参量进行自动检测的方法和手段。 “基于虚拟 仪器 的705D雷达自动 检测系统 ”的结构图如图1所示。它由中心计算机、虚拟仪器、测试硬件组成。测试硬件是对705D雷达16个重要参量进行数据调理和数据采集的载体,它提供功能模块所需的各种 接口 ,以及各类输入输出信号的隔离放大。中心计算机是控制中心,它首先通过高速I/O卡,数字 开关 卡对待测的雷达分系统参数进行选择判断,以确定要对该分系统进行检测所需的各种信号,之后即向 信号源 卡发出请求,信号源卡输出各种所需的信号,经过 数模转换
[安防电子]
基于<font color='red'>虚拟仪器</font>技术的705D雷达自动检测系统
基于虚拟仪器的锁相放大器远程实验系统设计
  O 引言   20世纪80年代末美国成功研制了虚拟仪器,虚拟仪器的发展标志着自动测试与电子测量仪器领域技术发展的一个崭新方向。虚拟仪器是利用PC机的显示模拟传统仪器的控制面板,以多种形式表达输出检测结果,由PC机的强大软件功能实现信号数据的运算、分析、处理,由I/O接口设备完成信号的采集、测量与调理,从而完成各种测试功能的一种计算机仪器系统。   基于互联网的远程实验是远程教育的一个新的发展方向。远程实验从远程计算机上进行实验操作和观察,所得到的实验结果与本地得到的完全相同,如同在实验室真实操作实验设备一样,突破了时空限制,极大地提高了实验教育的灵活性。将虚拟仪器技术和网络技术相结合,实现网络化虚拟仪器,并结合电路其他元件
[测试测量]
基于<font color='red'>虚拟仪器</font>的锁相放大器远程实验系统设计
基于虚拟仪器的视觉定位磁场分布检测系统设计
在较短时间内根据雷达电子调速系统的特殊结构开发一套高性价比的磁场分布自动检测系统,实现对雷达电子调速系统上各个通孔沿轴心方向的磁场分布情况做出快速、准确的自动检测,自动生成检测报告。 由此下载
[应用]
基于虚拟仪器的模糊控制恒压供水系统
0 引 言   城市供水,历来是一个城市发展过程中的一大问题,目前城市能源的短缺已经越来越限制了城市整体的发展,传统的泵组供水系统不但使水压高低不稳,而且还浪费大量的能源,使工厂的用电量急剧上升,节能环保已经成为了这个时代的主题。为了达到能源利用最大化,工程师们针对供水系统设计出了各种各样的控制方法,但大都需要大量的设备投入和复杂编程,而且无法实现控制方式的自优化。本文在传统的控制方法基础上,应用虚拟仪器模糊控制技术来实现恒压供水,该方法编程设计简单,操作界面美观大方,控制可靠,即保证了供水压力的稳定性,节约了能源,同时也为将来城市供水网络化管理提供了接口。 1虚拟仪器控制简介 1.1虚拟仪器   所谓虚拟仪器,就是在以通用
[工业控制]
基于<font color='red'>虚拟仪器</font>的模糊控制恒压供水系统
浅谈自制便携式虚拟仪器的快速实现方法
  1. 引言   随着计算机软硬件技术和信号处理技术的迅速发展,不仅使得已经提出多年的虚拟仪器成为现实,并且逐步得到日益广泛的应用和广大科学工作者以及工程人员的青睐。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。自1986年问世以来,世界各国的工程师和科学家们都已将NI LabVIEW图形化开发工具用于产品设计周期的各个环节,从而改善了产品质量、缩短了产品投放市场的时间,并提高了产品开发和生产效率。使用集成化的虚拟仪器环境与现实世界的信号相连,分析数据以获取实用信息,共享信息成果,有助于在较大范围内提高生产效率。虚拟仪器提供的各种工具能满足我们任何项目需要。实现了自制虚拟仪器的可行性
[测试测量]
浅谈自制便携式<font color='red'>虚拟仪器</font>的快速实现方法
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved