一种高性价比等精度数字频率计方案设计

发布者:真诚的友谊最新更新时间:2010-02-13 来源: 湖北师范学院电工电子实验中心关键字:数字频率计  等精度  高性价比 手机看文章 扫描二维码
随时随地手机看文章

  引言

  频率的概念就是1 s时间内被测信号的周期个数,最直接的测量方法就是单位时间内计数法,这种方法比较适合高频测量。低频通常用测周期法。这两种方法的测量精度不固定,与被测信号的范围相关。

  等精度频率测量法融合以上两种方法的优点,可兼顾低频与高频信号;但较以上两种方法而言,等精度频率测量有较高的测量精度,且误差不会随着被测信号频率的改变而改变。

  1等精度频率测量原理

  等精度频率测量原理框图如图1所示。图中计数器是带使能控制的32位计数器,EN是计数允许使能信号,高电平允许计数。计数器1对基准时钟信号fb计数,计数器2对被测信号fx计数。D触发器实现对被测信号fx上升沿检测,实现门控信号与fx上升沿同步,从而保证计数器2对被测信号计数刚好为整数个周期,零误差。

等精度频率测量原理框图

  测量过程控制时序波形如图2所示。测量开始,t0时刻MCU发出一个清零信号Clr,使计数器和D触发器置0;t1时刻MCU发出测量启动信号Gate,使 D触发器输人D为高电平;在被测信号fb上升沿到来t2时刻,D触发器Q端才被置1,使计数器1和计数器2的EN同时为1,计数器开始计数,系统进入计数允许周期。这时,计数器1和2分别对基准时钟信号和被测信号同时计数。一段时间过后,t3时刻MCU发出停止信号,即D触发器输入D为低电平,但此时计数器仍然没有停止计数,直到下一个被测信号的上升沿t4时刻到来时,D触发器Q输出0将这2个计数器同时关闭。

测量过程控制时序波形

  由图2可见,Gate的宽度Tc和发生的时间都不会直接影响计数使能信号EN,EN总是在被测信号fx上升沿改变,从而保证了被测信号被计数的周期总是整数个周期nTx,而与被测信号的频率无关。正确理解这点,是理解等精度频率测量的关键。由于测量过程中不能保证基准时钟周期的完整性,还会引入测量误差。这种随机误差dt最多只有基准时钟fb信号的一个时钟周期。由于fb的信号通常由高稳定度的高频晶体振荡器发出,任何时刻的绝对测量误差只有1/N1。例如,对于门控信号接近1 s的测量过程,fb取100 MHz的晶振,最大误差可以达到10-8。

  2方案设计

  2.1系统方案

  单片机定时器/计数器电路如图3所示。当C/T=0,TR=1,GATE=1时,单片机内部计数器时钟开关可受外部引脚INTn控制,这样就可以实现单片机内部计数器与外部计数器同步开关。

单片机定时器

  正是基于单片机这种电路结构,根据等精度原理,提出图4所示的系统框图。单片机加CPLD结构,利用单片机内部定时器定时,外部CPLD实现等精度测量逻辑电路和计数功能。基准时钟fb由单片机晶振提供,频率为单片机时钟晶振12分频后所得机器时钟。预置闸门由单片机引脚P1.0输出控制,计数器清零和复位由单片机引脚P1.1输出控制,单片机引脚P3.2是内部定时器使能开关控制引脚。

系统框图[page]

  2.2单片机与CPLD接口设计

  图5所示为一种基于总线的接口方案,采用三总线(数据、控制、地址)结构,用于实现单片机与CPLD之间的数据传输。

基于总线的接口方案

  单片机P0口为双向数据总线,与CPLD的通用IO口连接,完成数据和低8位地址传送。控制总线包括单片机读写控制总线RD和WR,以及地址锁存信号ALE(Address Lock Enable)。地址总线A15(P2.7)通过CPLD的全局输入信号引脚输入。

  2.3 CPLD电路

  CPLD 内部电路原理框图如图6所示。当预置闸门GATE输入高电平时,由于DFF触发器为边沿触发器,在上升沿时才将数据输出,所以Q输出端并不立即置1,只有当外部信号上升沿到来时,Q才为1,使能计数器和定时器。这样保证了计数器和定时器在被测信号的上升沿到来时同时有效。当预置闸门GATE=0关闭时,两计数器的允许信号同样在被测信号的上升沿到来时同时关闭。由于基准信号的定时器与被测信号严格同步,所以理论上最大误差只有基频的一个周期。CPLD内计数器为32位,在预置时间内,只要计数器不溢出,即可准确测量被测信号个数。

CPLD 内部电路原理框图

  3方案实现

  3.1电路原理

  电路原理如图7所示。图中给出了单片机(STC89C52RC)与CPLD(ATF1504AS)的具体接口电路,LCD1602接口电路,带ISP下载接口的CPLD电路,被测信号从J1直接输入给CPLD I/O引脚。这里没有给出信号前置调理与波形整形电路。

电路原理

   3.2 CPLD电路设计

  CPLD 开发选择Altera公司的EDA软件QuartusII和目标器件EPM7064SLC44=10,需要完成电路设计输入、编译、仿真、引脚绑定(引脚分配请参考电路图),并编译得到最终配置文件*.pof。然后再使用Atmel公司提供的转换工具POF2JED软件将前面得到的*.pof文件转换成*.jed文件,再用AtmelISP软件将*.jed文件下载到CPLD器件ATF1504即可。

  以下是采用VerilogHDL硬件描述语言设计的CPLD内部电路源码:

CPLD内部电路源码

CPLD内部电路源码[page]

  3.3程序设计

  整个测量过程由MCU控制完成,然后计算并把结果送LCD显示。测量开始,MCU首先发出清零CLR信号,对外部CPLD电路复位和计数器清零,还要将定时器软计数器清零,之后发出启动信号GATE=1,测量开始。MCU通过查询软计数器(定时中断加1),控制闸门时间大致在1 s左右,时间到,MCU立即发出停止信号GATE=0,随后查询引脚INT0,确认计数停止。之后,分别读回外部计数和内部计数器计数结果,MCU根据等精度原理算出信号频率,将结果送LCD显示。程序主流程和定时中断流程如图8所示。

程序主流程和定时中断流程

  4测试结果

  笔者在实验室使用RIGOL-DG1015DDS信号发生器校准。通过修正单片机时钟偏差,22.118 4 MHz的12分频为1.843 2 MHz,对1 843 200 Hz修正86.95 Hz后带入程序计算,整数频点测量结果可以达到和信号发生器完全一致,接近零误差。特针对一些非整数频点进行测量,结果如表1所列,误差达到10-7数量级,与理论值一致。

测试结果

  由于系统采用的是单片机机器时钟作为基准信号时钟,基准信号频率较低,使得测量精度不高;如果采用外部更高频基准信号做时钟信号,精度还可进一步提高。

  结语

  将等精度频率测量原理巧妙地用MCU+CPLD实现,设计了一种低成本、高性价比的频率计方案。MCU选择STC89C52RC,CPLD选择Atmel公司的ATF1504AS,实现了宽范围高精度的频率测量。该方案具有结构简单,成本低等优点,具有广阔的市场前景。

关键字:数字频率计  等精度  高性价比 引用地址:一种高性价比等精度数字频率计方案设计

上一篇:基于PC和MAX1396EVKIT的示波器参考设计
下一篇:泰克和Optametra共同解决100G光测量挑战

推荐阅读最新更新时间:2024-03-30 22:10

基于多路移相时钟的瞬时测频模块设计
  0 引 言   目前,脉冲雷达的脉内信号分析一直是研究的热点和难点,如何能更快速,准确的对脉内载波频率测量成为研究人员关注的目标,与此同时高精度频率源在无线电领域应用越来越广泛,对频率测量设备有了更高的要求,因此研究新的测频方法对开发低成本、小体积且使用和携带方便的频率测量设备有着十分重要的意义。本文根据雷达发射机频率快速变化的特点,采用目前新型的逻辑控制器件研究新型频率测量模块,结合等精度内插测频原理,对整形放大后的脉冲直接计数,实现对下变频后单脉冲包络的载波快速测频。具有测量精度高,测量用时短的特点,能作为脉冲雷达单脉冲瞬时测频模块。 1 移相时钟计数法测频原理   移相时钟计数法以等精度测频法为基础,是一种新的内
[安防电子]
基于多路移相时钟的瞬时测频模块设计
科锐新型LED平台实现更高性价比
2012年2月13日,中国北京讯 — LED照明领域的市场领先者科锐公司Nasdaq: CREE)日前宣布在LED技术领域取得了新的突破,将彻底重新定义照明产业,并颠覆了人们早先对于前期LED系统成本与性能的假定。科锐XLamp® XT-E白光LED拥有其它LED产品两倍的性价比(lm/$)以及业界最高的性能与光效。基于科锐新型碳化硅技术平台,XLamp® XT-E LED和近期发布的XLamp® XB-D LED在LED性价比上体现出引人注目的提升。科锐新型平台能够显著降低LED初始成本,从根本上消除制约LED照明大规模应用的最大障碍,并加速实现LED照明系统取代传统的低效照明。 Digital Lumens公司首席产品官Fr
[电源管理]
科锐新型LED平台实现更<font color='red'>高性价比</font>
富士通推出高性价比2D显示控制器件
富士通微电子有限公司(FMC)日前针对中档汽车市场推出了全新高性价比器件。富士通的MB86276是基于富士通创新型三维(3D)图像显示控制器MB86296改进而来的,而MB86296是专为高端汽车所设计的。全新的二维(2D)图像显示控制器(GDC)MB86276是中档汽车导航和娱乐市场的理想选择,该市场正在北美崛起,并很有可能成为亚洲市场的未来趋势。MB86276二维图像显示控制器(GDC)也具有高端三维器件的许多特性,包括双显示支持、图像捕捉、alpha混合以及可以进行低端3D操作的16位Z缓冲。 MB86276二维图像显示控制器具有原本为富士通MB96296三维GDC而设计的引擎和视频输入单元,同时还有内置的alph
[新品]
基于DSP的简易数字频率计
  随着微电子技术和计算机技术的飞速发展, 各种电子测量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化, 特别是DSP技术诞生以后,电子测量技术更是迈进了一个全新的时代。近年来,DSP逐渐成为各种电子器件的基础器件,逐渐成为21世纪最具发展潜力的朝阳行业,甚至被誉为信息化数字化时代革命旗手。在电子测量技术中,频率是最基本的参数之一,它与许多电参量和非电量的测量都有着十分密切的关系。例如,许多传感器就是将一些非电量转换成频率来进行测量的,因此频率的测量就显得更为重要。数字频率计是用数字来显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。   数字频率计广泛采用了高速集成电路和大规模集成电路,使得仪器
[测试测量]
基于DSP的简易<font color='red'>数字频率计</font>
高性价比的电源适配器应用电路设计
  本文所讨论的低功率电源适配器主要针对输出功率5~15瓦的电源系统。主要有两类方案,即集成PWM控制器方案和分立PWM控制器方案。图1是集成PWM控制器的典型应用图,U1采用DIP-8封装,内部集成了PWM控制器和功率MOSFET。变压器输入侧电路包括:由X电容CX和共模电感L-COM组成的输入滤波电路,由BD组成的整流桥电路,由U1组成的控制及功率电路。变压器输出侧包括:二极管D10等组成的输出整流滤波电流;固定电压基准U2等组成的稳压反馈电路。该方案由于功率器件和PWM器件集成在一个封装内,故集成度较高,但散热设计难。图2是分立PWM控制器方案,U1多采用SOIC-8或SOT23-6, 内部只含PWM控制器,功率器件Q1是M
[电源管理]
<font color='red'>高性价比</font>的电源适配器应用电路设计
MAX17065 高度集成的PMIC提供高性价比的高性能OL
MAX17065是一款 电源 管理IC (PMIC),包含一路升压DC-DC转换器、一路反相DC-DC转换器、正负稳压电荷泵和一个低压差线性稳压器。 该款PMIC可为有源矩阵、有机发光二极管(AM-OLED)显示器提供高度集成的、具有成本竞争力的电源方案。 MAX17065采用Maxim专有的高压技术,集成了OLED显示器所需的所有电源。 MAX17065理想用于蜂窝电话、数码照相机(DSC)、MP3播放器以及其它消费类产品。 高度集成的OLED显示器电源方案 SUNNYVALE,CA。2009年1月15日。Maxim Integrated Products (NASDAQ:MXIM)推出高度集成的电源管理IC
[模拟电子]
MAX17065 高度集成的PMIC提供<font color='red'>高性价比</font>的高性能OL
基于TMS320F2812的数字频率计的设计
频率是指某周期现象在单位时间内所重复的次数,它与时间在数学上互为倒数。时间频率的精确测量促进了科学的发展,而科学的发展又反过来把时间频率的测量提高到新的高度。特别在最近的几十年里,频率和时间的测量精度已达到非常高的水平,即已远远超过其他所有物理量的测量精度。它主要的应用领域有导航和通信两大类,以及空间技术、工业生产、交通、科学研究及天文学与计量学方面。   为了适应现代技术发展的要求,新型的频率计中都使用了单片机进行数据处理,这样,由软件代替了复杂的硬件电路,使仪器的结构简化,功能增强。本文给出一种基于TMS320F2812(简称F2812)DSP的一种简易测频方法。该方法有效利用F2812的片内外设事件管理器的捕获功
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved