基于比时法的晶振频率测量建模与分析

发布者:以泉换泉最新更新时间:2010-11-23 来源: 西北核技术研究所陕西关键字:晶振频率测量  比时法  石英晶体振荡器  CPLD 手机看文章 扫描二维码
随时随地手机看文章

  0 引言

  石英晶体振荡器受制造工艺、器件老化以及外部温度等因素影响,其实际频率值与标称频率值存在偏差。此外,晶体振荡器内部存在着各种噪声也会使频率值产生随机起伏,从而导致晶振频率的准确度和稳定度降低。当前,国内外在研究晶体振荡器的老化和随机噪声、分析晶振频率误差特性方面提出了很多方法,比较常见的有时间对数线性模型法、自适应滤波法及非线性时变预测法。前两种方法的缺点是参数较多,选择合适的参数较难,非线性时变预测法的模型描述能力强,但由于没有函数参数的显式表达式,不能将模型求解归结为参数求解问题,一般通过学习来逼近该函数,主要用于频率变化的预测。

  在上述方法的基础上,本文利用CPLD设计了一种电路,该电路采用比时法来测量晶振频率变化,并根据其频率随时间变化拟合曲线的特点,用线性回归法分析其频率误差特性。该方法模型简单,参数易于估计,可通过简洁的补偿方法消除晶振相对频偏,具有实际的应用价值。

  1 晶振频率测量系统组成

  测量系统由GPS接收机、晶振、时差测量模块、时钟产生模块、计算机数据采集处理组成。组成原理如图1所示。

  GPS接收机每秒输出1路TTL电平的标准秒脉冲(1 PPS),晶振是时差测量和时钟产生的频率源。时钟产生电路产生本地秒脉冲。时差测量电路测量GPS秒脉冲与本地秒脉冲的相位差值。

  采用比时法测量晶振频率的系统工作原理如下:首先由晶振分频得到本地的1 Hz频率源,将GPS秒脉冲与本地晶振秒脉冲送入时差测量模块进行相位比较,得到两者的相位差信号,设计时间间隔计数器对此相差闸门信号计数,计数值即为晶振频率相对于标准频率的偏差,反映了晶振频率的误差特征。时间间隔计数器每秒测量一次两者的偏差值,需要测量的频差数据量由计算机设定,测量结果传送到计算机进行数据统计,并对晶振频率误差特性进行分析。本地时钟产生、时差测量及数据采集电路模块等都由CPLD设计实现。[page]

  2 模型建立

  实验以GPS秒脉冲作为标准参考信号,采用比时法对晶振的输出频率进行测量。按照建立的测量系统,实际对某一晶振采集到30个计数值,如表1所示。

  表1中x表示测量的时间(单位:s);y表示晶振脉冲计数个数。假设晶振在某秒计数值为M,它的计数周期为T,则MT为晶振秒脉冲与GPS秒脉冲的时间差值。例如在第6 s时测得计数值为470,则表示在第6 s时晶振与GPS秒脉冲的时间差为470T。为了研究时间x与计数个数y之间的关系,用ORIGIN工具软件对数据进行拟合处理,得到的x,y,关系曲线如图2所示。

  从散点图可以看出,测量计数值和测量时间大致呈线性关系。据此假设这两个变量之间的内在关系是一条直线,这些点与直线的偏离是由于测量过程中其他一些随机因素的影响而引起的,这样可以假设这组测量数据有如下结构形式:

  式中:ε1,ε2,…,εN分别表示其他随机因素对变量y1,y2,…,yN影响的总和,一般假设它们是一组相互独立,并服从同一正态分布N(0,δ)的随机变量。变量x在实验中为自然数,表示具体的秒脉冲数值。这样,变量y表示实际所测得的晶振与标准频率的计数差值,它是服从N(β+βx,δ)的随机变量。[page]

  用最小二乘法们来估计参数β0,β。设b0,b分别是参数β0,β的最小二乘估计,于是得到一元线性回归的回归方程:

  式中:b0,b是回归方程的回归系数,分别表示晶振相对于标准频率的初始误差和累积误差。应用最小二乘法可求得回归系数b,b0为:

  3 数据分析与处理

  3.1 回归系数估计

  为了定量分析数据,从而确定晶振频率误差的组成,首先对上述测得的数据进行归一化处理。实际测量中得到的是晶振脉冲的计数个数,设测量系统所用晶振频率为10 MHz,可将计数数据转化为晶振相对于标准时间每秒的时间之差。例如在x=30 s时,y=2 349,表示在第30 s时,晶振频率相对于标准频率的计数值为2 349,若晶振频率f=10 MHz,则可得到在第30 s时晶振相对于GPS时间的误差为t=y/f=234.9μs。

  用Matlab对归一化数据进行处理,依照最小二乘原理,得到计数时间x与时间差值y的均值,以及x的自相关、x和y的互相关、y的自相关及回归方程如表2所示。

  以上求得了回归方程,但是该方程是否基本上符合y与x之间的客观规律,是否符合晶振频率误差变化的实际特点,还需要对回归方程做进一步的分析。在回归分析法中,通常采用方差分析法们对回归方程的显著性进行检验,其实质是将N个测量值的影响从数量上区分开,然后用F检验法对所求回归方程进行显著性检验。[page]

  3.2 晶振频率误差数据方差分析及显著性检验

  测量值y1,y2,…,yN之间的差异(称为变差)是由两方面的原因引起的。一是自变量取值的不同,二是其他因素(包括试验误差、随机误差等)的影响。为了对回归方程进行检验,把两者所引起的变差从y的总变差中分解出来。根据上述数据可得:

  式中:U称为回归平方和,它反映了在y的总变差中由于x和y的线性关系而引起的y变化的部分;Q称为残余平方和,即所有测量点距回归直线的残余误差平方和。

  若总的平方和由N项组成,其自由度就为N-1,总的离差平方和的自由度可分为回归平方和的自由度υU和残余平方和的自由度υQ之和,即:

  在一元线性回归中,υU=1,υS=N-1,则Q的自由度υQ=N-2。由回归平方和与残余平方和的意义可知,一个回归方程是否显著,也就是y与x的线性关系是否密切,取决于U及Q的大小,U愈大Q愈小,说明y与x的线性关系愈密切。通常可以采用F检验法来对方程进行显著性检验。对于一元线性回归,将U及Q的值代入上式得到统计量F:

  由F分布表可以查出,F≥F0.01(1,28)=7.64。可认为回归是高度显著的。

  残余平方和Q除以它的自由度υQ所得商:

  称为残余方差,它可以看作排除了x对y的线性影响后,衡量y随机波动大小的一个估计量。残余方差的平方根:

  称为残余标准差,它可用来衡量所有随机因素对y一次性测量平均变差的大小,σ愈小,则回归直线的精度愈高。

  把平方和及自由度进行分解的方差分析数据结果归纳在一个表格中,如表3所示。

  从表3可以看出,在30 s时间内,晶振实际频率与其标称频率的相对偏差引起的误差平方和为1.377 18×105μs2,其他各种随机因素引起的误差的平方和为1.996μs2。晶振相对频偏引起的误差远远大于其他因素引起的误差,表明了晶振频率误差贡献主要来源于实际频率与标称频率之间的频偏。通过频率修正即可得到一种高稳定度的频标源。

  4 结语

  以上分析结果表明,该晶振频率误差主要来源于实际频率与标称频率的相对偏差,随机误差对晶振整体误差的贡献很小。通过对晶振标称频率值进行在线补偿可以消除其相对频偏,从而获得一种具有较高稳定度的频率源,可为需要时间显示的场所提供高精度的时间服务。

关键字:晶振频率测量  比时法  石英晶体振荡器  CPLD 引用地址:基于比时法的晶振频率测量建模与分析

上一篇:卷绕式铅酸蓄电池在水情自动测报系统中的应用
下一篇:一种基于DDS的电路板检测仪信号源设计

推荐阅读最新更新时间:2024-03-30 22:12

基于CPLD/FPGA的CMI编码设计与实现
   0 引言   CMI码是传号反转码的简称,它是一种应用于PCM四次群和光纤传输系统中的常用线路码型,具有码变换设备简单、有较多的电平跃变,含有丰富的定时信息,便于时钟提取,有一定的纠错能力等优点。   在高次脉冲编码调制终端设备中广泛应用作接口码型,在速率低于8 448 Kb/s的光纤数字传输系统中也被建议作为线路传输码型。   本文针对光纤通信传输码型的要求和CMI码的编码原理,介绍了一种以EPM系列7064芯片为硬件平台,以Max+PlusⅡ为软件平台,以VHDL为开发工具,适合于CPLD实现的CMI编码器的设计方案。    1 CMI码的编码规则   CMI编码规则如表1所示。   在CMI编码中,输入
[嵌入式]
基于<font color='red'>CPLD</font>/FPGA的CMI编码设计与实现
一种智能ARI NC429总线接口板的硬件设计与实现
    随着航空电子系统综合性的增强,各个系统之间的数据通讯,变得尤为重要。ARINCA29作为最常用的通讯总线,广泛使用在波音系列飞机、欧洲空中客车等机种,成为机载设备之间通讯的主要接口。我国的惯导系统,也以ARINc429为主要通讯总线。ANINC 429数字信息传输规范(D玎s)33为在航空电子设备之间传输数字信息,制定了航空运输工业标准。     ANINC 429的发送速度有高速(100 kbps)和低速(12.5 kbps)两种。对于低速发送,一般的嵌入式处理器(如8051系列单片机)即可满足;而对于高速发送,虽然采用性能更好的80C196单片机可以满足,但其外围电路繁冗,会影响板卡的性能。     同上述两种
[嵌入式]
基于CPLD的步进电机驱动模块
步进电机是数字控制电机,是一种将电脉冲转换成角位移的精密执行元件。它的旋转是以固定的角度一步一步运行的,每给步进电机发一个脉冲电机就旋转一个固定的角度,只要脉冲数发的正确,电机就能走到位,无累积误差,所以对步进电机的控制可以采用开环控制方法。如何精确且经济的控制步进电机成为广大研究人员探讨的课题。本文将采用CPLD来实现对步进电机的控制。并最终通过实验仿真结果。 1步进电机驱动原理 步进电机驱动是靠给步进电机的各相励磁绕组通电,实现步进电机内部磁场方向的变化来使步进电机转动的。设我们所用的步进电机是四相的,这四相分别为A,B,C,D,对应于四对磁极。每个磁极的内表面都分布着大小,齿间距相同的多个小齿(不同的步进电机,小齿的个数不
[嵌入式]
基于DSP和CPLD的宽带信号源的设计
  摘要:利用DSP和CPLD来设计宽带信号源,将DSP软件控制上的灵活性和CPLD硬件上的高速、高集成度和可编程性有机地结合起来,一方面使得信号源控制简单、可靠,同时保证产生的信号高速、准确。   关键词:DSP,CPLD,宽带信号源   1 引言   信号源是雷达系统的重要组成部分。雷达系统常常要求信号源稳定、可靠、易于实现、具有预失真功能,信号的产生及信号参数的改变简单、灵活。本文采用DSP和CPLD来设计信号源的控制部分,一方面能利用DSP软件控制的灵活性,另一方面又能利用CPLD硬件上的高速、高集成度和可编程性。使用这种方法可以充分利用软件支持来生成和加载任意波形数据,并能方便地实现对信号参数的控制和对波形数据的随意
[应用]
机载导弹一控四电动舵机控制器研究与设计
舵机系统是导弹控制系统的执行机构,在导弹飞行过程中舵机控制器接收弹载计算机的舵偏角信号,控制电机旋转,从而驱动舵面偏转,产生弹体所需要的控制力矩控制弹体飞行。随着导弹性能要求不断提升,人们对于电动舵机系统的整体要求向着体积不断减小,承载能力不断增强,控制性能不断提高的方向发展。稀土永磁材料和新型大功率电子器件使电动舵机的小型化成为可能。本文舵机系统采用三相无刷直流电机+滚珠丝杠直连式结构。为了减小舵机的体积和重量,舵机系统采用一个舵机控制器控制四套舵机。控制器以DSP+CPLD为核心架构,DSP作为主控CPU,CPLD用于做接口处理,采用位置环和速度环进行双闭环控制。 1 舵机控制器硬件设计 舵机控制器硬件结构如图1所示。舵机控
[嵌入式]
基于CPLD/DSP的赛车全电防滑刹车控制器设计
1 引言 赛车刹车系统是赛车系统上具有相对独立功能的子系统,其作用是承受赛车的静态重量、动态冲击载荷以及吸收赛车刹车时的动能,实现赛车的制动与控制。其性能的好坏直接影响到赛车的快速反应、安全制动和生存能力,进而影响赛车的整体性能。本文设计了赛车全电防滑刹车控制器的硬件和软件,最后研究了适合于赛车刹车的控制律。 2 系统硬件电路设计 本赛车刹车控制器是由防滑控制器和电机驱动控制器组成。两个控制器都是以DSP芯片为核心。防滑控制器主要是以滑移率为控制对象,输出给定的刹车压力,以DSP芯片为CPU,外加赛车和机轮速度信号调理电路等。电机驱动控制器主要是调节刹车压力大小,并且控制电动机电流大小,也是以DSP芯片为CPU,再加外
[嵌入式]
VHDL语言在FPGA/CPLD开发中的应用
1 引 言   EDA(电子设计自动化)关键技术之一是采用硬件描述语言(HDL)描述电路系统,包括电路结构、行为方式、逻辑功能以及接口。就FPGA和CPLD(分别是现场可编程门阵列和复杂可编程逻辑器件的简称)开发来说,比较流行的HDL主要有VHDL、ABEL-HDL、AHDL等,其中,VHDL对系统的行为描述能力最强,已被IEEE确定为标准HDL,并得到目前所有流行EDA软件的支持,进而成为系统设计领域最佳的硬件描述语言。用VHDL设计电路系统,可以把任何复杂的电路系统视为一个模块,对应一个设计实体。在VHDL层次化设计中,它所设计的模块既可以是顶层实体,又可以是较低层实体,但对不同层次模块应选择不同的描述方法(如行为描述或结构描述
[单片机]
VHDL语言在FPGA/<font color='red'>CPLD</font>开发中的应用
CPLD实现单片机与ISA总线并行通信
  CPLD(Complex Programmable Logic Device)是一种复杂的用户可编程逻辑器件,由于采用连续连接结构。这种结构易于预测延时,从而电路仿真更加准确。CPLD是标准的大规模集成电路产品,可用于各种数字逻辑系统的设计。近年来,由于采用先进的集成工艺和大批量生产,CPLD器件成本不断下降,集成密度、速度和性能大幅度提高,一个芯片就可以实现一个复杂的数字电路系统;再加上使用方便的开发工具,使用CPLD器件可以极大地缩短产品开发周期,给设计、修改带来很大方便 。本文以ALTERA公司的MAX7000系列为例,实现MCS51单片机与PC104 ISA总线的并行通信。采用这种通信方式,数据传输准确、高速,在12
[嵌入式]
用<font color='red'>CPLD</font>实现单片机与ISA总线并行通信
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved