用音频信号实现无线传感器网络节点间距测量

发布者:lcn18560863680最新更新时间:2011-03-04 来源: vihome关键字:测试 手机看文章 扫描二维码
随时随地手机看文章

利用音频信号实现节点间距自主测量的无线传感器网络节点系统。本系统包括dsPIC6014A微控制器、512 KB的SRAM,2.4 G波段的RF收发模块、音频收发模块及电源管理模块等。通过测量RF同步信号与音频信号的时间差来测量节点间的间隔距离,节点利用多次测量数据累加平均及IIR数字滤波技术提高了测距信号的信噪比,用幅度检测实现了测距信号的到达时刻判别。测试数据表明,该节点最远测距距离可达30 m,误差小于3.5%。

节点间隔距离测量所利用的参量主要有:

接收信号强度(RSS)、信号时间差(TPOA)、角度量(AOA)/信号到达方向(DOA)。其中,对RSS和射频加超声波测距的研究较多。射频信号的传播衰减和众多参数相关,如初始发射功功率、天线距离地面的高度、反射、载波频率等等,不进行校验时,误差可能超过50%。射频加超声波定位采用的超声波频率为40kHz,存空气中的衰减特性决定了测距距离一般不超过10 m,方向性强,适合室内使用。声波在空气巾的衰减随着频率的降低而减少,在数kHz时,利用低成小的商业音频收发技术就能实现数十米范围内的距离测量,是一种实现远距离高精度定位的有效技术。文献[1,6]介绍了利用伪随机码+DSP相关处理实现厘米级的声源定位精度,系统结构复杂。文献[5]的工作与本论文研究工作相近,采用通用的Mica2节点平台,用大功率声发射器及模拟锁相环实现了音频测距信号检测。

比较成熟并已经商业化的节点是由美国加州大学伯克利分校研制的Mica系列和Telos节点。这些节点仅提供了一个基本硬件平台,必须采用专用接口板才能实现其他功能的扩展。本论文研究目的是探索一种可以在野外使用,具有远距离高精度自定位的节点硬件系统。设计一种全新的节点结构。

2 节点硬件系统设计

基于上述考虑,实现的节点结构如图1所示。节点采用Microchip公司的dsPIC6014A单片机,它内置了12位ADC和8 KB的RAM,16位的指令操作和I/O控制,支持C语言编程和部分DSP功能,时钟、功耗控制灵活,能在3~5 V的电压范围工作,3.3V时的最高运行速度20 MIPS。节点配置了一片512KB的SRAM。dsPIC6014A的一个16位端口被用作SRAM地址总线的低位,高3位由另外的3个I/O位控制,8个子存储空间被用于保存采集到的音频信号数据和进行数字信号处理时的临时数据。

射频收发模块采用nRF24L01,通过SPI接口和CPU进行数据交换。音频信号发生器采用市售标准的压电蜂呜器,经过对自然界的噪声频谱测试及统计分析,发现多数的音频信号频率集中在20~3000 Hz,因此,蜂鸣器的中心频率选择为3000 Hz,声压大于90 dB。音频接收传感器为驻极体式麦克风,两级放大器增益约60 dB,为了提高抗干扰能力,节点中增加了一个中心频率为3000 Hz的二阶巴特沃斯带通滤波器,电路结构如图2所示。电路实测结果:中心频率3000 Hz,-3 dB带宽约为987 Hz。

节点采用1节3.7 V锂离子可充电电池作为电源,在休眠期内关闭一切不工作单元的电源供给以实现节能。一个由RTC(实时时钟)控制的电源管理单元进行各级电源分配和管理。系统上电后,电源管理单元被置为有效状态,CPU对RTC进行唤醒时刻设置,工作完成后,CPU关闭电源管理单元输出,此时只有RTC和电源管理单元在工作,功耗为12 μW,当预定的唤醒时刻到来时,RTC输出一个中断信号,开启电源,节点进入工作状态,如此重复,实现了节点工作和休眠周期的控制。节点的独特之处是通过利用RTC所具有的数分钟到数天时间的定时中断设置功能实现了节点的运行与休眠周期灵活控制,实现了低功耗设计。

在室外利用音频信号测距时,大气温度、风速及风向对声速有一定的影响,节点上实现风速测量目前还存在较大的技术障碍,低风速时温度的影响是主要的,这里采用公式c=331.4+0.6T来补偿声速,式中T为大气温度(℃)。温度传感器为Maxim公司的DS1624,具有标准的I2C接口。

3 测距信号到达时刻算法

本文提出了一种基于数字整流处理的测距信号TOA估计方法,其基本原理是通过对测距信号进行数字信号处理,获取具有较高信噪比的测距信号幅值变化信息,再通过幅度变化趋势分析实现TOA的估计。它包括以下处理过程:

(1)测距信号的信噪比。测距信号可以表述为:f(t)=Av+Assin(ωst+φs)+N(t),Av为信号采集后产生的直流分量,N(t)为随机分布的噪声。根据信号分析理论,提高信噪比可以采用数字滤波或者多次采样累加后求平均值的方法。考虑到节点的运算能力及硬件结构,采用4次采样再求平均值的方法。

(2)去除直流分量。对f(t)求平均值Av,再进行减法处理,滤除信号中的直流分量,使之成为交流信号j(t),音频测距信号是交流信号,滤除直流分量有利于后续处理过程中分离出较大的测距信号幅度。

(3)数字全波整流。经过(2)处理后的信号是正负变换的双极性信号,再进行z(t)=| j(t) |处理,即数字全波整流,变换为正的单极性信号。

(4)低通滤波。利用二阶IIR低通滤波器对z(t)进行数字滤波处理,得到一个与z(t)包络线相似的信号b(t)。

(5)对b(t)进行幅值变化趋势分析。在测距信号开始出现的数据段,相邻数据点的幅值差较大,而且是连续递增的(通过试验可以确定连续递增的最小数据个数),找出幅度连续增加的起始点n(i),即为信号到达时刻点,如图3所示。

4 试验结果

试验用的测距信号为单频率正弦信号,频率为3000 Hz,采样频率23.8 kHz,采样长度为 4096点(12位ADC)。图3是原始信号波形及数据处理过程中的数据波形。对于原始信号,直接利用信号的幅度或者频率来判别测距信号的起始点存在很大误差或者无法识别,而利用本文所述的方法可以获得精度较高的信号起始点。在系统时钟为10 MHz时,整个计算过程约耗时1.5 s,可以满足静态或者慢速移动节点的定位需求,在30 m处的测距最大误差约3.5%。

5 结 论

实现了一种具有音频定位功能的无线传感器网络节点,它具有独立的RTC+电源管理单元设计,实现了低功耗休眠,可以实现30 m远的节点间距测量。提出用单片机实现的测距信号TOA估计方法,可以获得较高的到达时刻估计精度,为实现高精度的节点定位提供了一种有效的方法。该节点可用于构建应用于森林、农田等远距离节点间距的无线网络。

关键字:测试 引用地址:用音频信号实现无线传感器网络节点间距测量

上一篇:可扩展的全线速感知视频质量监测解决方案【泰克】
下一篇:泰克在NAB2011展出内容创建、后期制作等产品

推荐阅读最新更新时间:2024-03-30 22:13

安捷伦E6 640A EXM无线测试仪全面覆盖未来无线技术
全新EXM无线测试仪帮助无线设备加快测试开发,提升产能.随着市场对于无线设备需求的不断增加,怎样让产品快速上市并取得销售先机是每个设备制造商面临的挑战。而测试是设备批量生产前的重要一环,加快测试开发也能帮助设备制造商迅速提升产能和优化大规模制造。 近日,安捷伦推出的E6 640A EXM无线测试仪,全面覆盖了各种现有及未来的无线技术标准,如LTE-Advanced、LTE FDD/TDD、HSPA+、W-CDMA以及TD-SCDMA等;可支持的无线连接技术,包括8 0 2.11a c、蓝牙、GPS/GNSS和数字视频等。安捷伦科技电子测量集团移动宽带事业部市场营销经理Garrett Lees表示:“目前E6 640A E XM
[测试测量]
可检测电池漏电率的自供电8通道测试
镍金属氢化物(NiMH)电池的生产厂商很多,充电速率各不相同。另外,随着重复使用,NiMH电池的最大充电量以不同的速度减小。因此,很难测定这些电池的可用寿命和充电容量。为测量NiMH电池的性能,设计了一种多通道电池放电装置,该装置包括有一个Windows Hyperterminal串行接口,由接口自身供电,所以,不需要外部电源。 MICROCHIP公司的PIC18F2320微控制器控制该测试仪。该MCU有一个在整个工作范围内的容差为1%的8MHz内部振荡器。这样,不需外接晶体就可使UART波特率位于误差范围内。该器件也提供有10通道10位模/数转换器,该应用中使用了其中8个。用8个2.2Ω、1W的电阻测试电池的放电情况,测试电
[测试测量]
可检测电池漏电率的自供电8通道<font color='red'>测试</font>仪
HMC5883 51串口测试程序
51单片机串口输出 //*************************************** // HMC5883 51串口测试程序 // 使用单片机STC89C51 // 晶振:11.0592M // 显示:PC串口 // 编译环境 Keil uVision2 // 参考宏晶网站24c04通信程序 // 时间:2011年3月1日 //**************************************** #include REG51.H #include math.h //Keil library #include stdio.h //Keil library #include IN
[单片机]
HMC5883 51串口<font color='red'>测试</font>程序
封装测试设备商艾科瑞思拟挂牌新三板
电子网消息,苏州艾科瑞思智能装备股份有限公司已于近日正式申请新三板挂牌,全国股转系统披露的挂牌资料显示,董事长王敕与董事关蕊二人合计控制公司68.98%股份,为共同实际控制人。 公告显示,艾科瑞思2015年度、2016年度、2017年1-5月营业收入分别为1071.96万元、2044.54万元、893.84万元;净利润分别为111.5万元、254.43万元、66.01万元。 艾科瑞思专注于半导体封装测试设备的研发、设计、生产和销售。 艾科瑞思本次挂牌申请的主办券商为安信证券,法律顾问为江苏世纪同仁律师事务所,财务审计为中兴华会计师事务所(特殊普通合伙)。
[半导体设计/制造]
测试测量行业巨头探索用户体验营销服务模式
苹果——这家消费类巨头的设计和营销非常推崇用户体验模式,因而取得了巨大的成功,在市场上独占鳌头。如今,“苹果”们的“体验店”大众营销模式也开始在高端的测试测量仪器和工具行业上演。近日,国际巨头泰克与兄弟公司福禄克(Fluke)联手,悄然试水零售店销售模式,可谓测试测量仪器业首创,引发业界广泛关注。 新开张的两间零售店选址深、沪两地的超人气地段电子卖场(深圳赛格电子市场和上海四川路电子一条街),日常运营有由实力很强的两家本地经销商负责。“这为广大工程师和设计人员提供了一个新的渠道,使他们可以很容易地在现场直观了解、试用及购买业界领先的通用测试测量仪器仪表和工具。”泰克亚太区市场总监James Alderton表示,“众
[测试测量]
<font color='red'>测试</font>测量行业巨头探索用户体验营销服务模式
如何提高矢量网络分析仪测试系统的性能指标
一、矢量网络分析仪器简介: 1、什么是矢量化测量? 在通信领域内,由于数据信号传输的带宽和频率范围有限制(通常不超过30MHz),所以采用一定的技术方法来降低信源到接收机的频带宽度。 常用的方法是使用调制解调器将模拟电脉冲转换成数字信息进行传输;或者通过采样电路把输入电压或电流转换成为直流分量再经A/D变换后得到相应的输出量值等。这些处理过程均需要经过放大器和滤波器等环节来实现信号的幅度与相位变化率的变化,即所谓的幅相。而实现这一变化的手段就是所谓的高通 率低阻型器件——放大器及低噪声滤波器的应用了。 2、如何提高测试系统的性能指标? (1)选择合适的传感器:传感器的精度直接影响到测量的准确度,同时也会影响系统整体的稳定性
[测试测量]
如何提高矢量网络分析仪<font color='red'>测试</font>系统的性能指标
LCR测试仪的五种连接方法
2端子法: 虽然连接容易,但是由于接触电阻、连接电缆的串联阻抗(r)、连接电缆以及端子之间的杂散电容(Cs)会引起较大的误差,如果不是中等数量级的阻抗,那么测量误差就会比较大。 3端子法: 对测试电缆和试样进行屏蔽,通过抑制杂散电容,减少对于高阻抗零部件的测量误差。主要可用于测量较小的电容量。 4端子法: 设置独立的电压检测电缆,电机测试仪器以消除由于测试电缆的串联阻抗所引起的电压降和接触电阻的影响等,是一种减少低阻抗零部件的测量误差的方法。需要考虑由于电缆之间的互电感(M)所产生的影响。如果使用在一个夹子上有2个相互绝缘的电极的开耳芬夹子,那么用2个夹子可以容易地进行4个端子的连接。 5端子法: 是一种减少
[测试测量]
基于虚拟仪器的弱信号处理模块测试系统设计
   0 引 言   随着测控技术的发展,要求测试的项目和测试参数日益增多,对自动化测试速度和测试准确度也提出了较高的要求。虚拟仪器是基于计算机和标准总线技术的模块化系统,通常由控制模块、仪器模块和软件组成。由软件将计算机硬件资源与仪器硬件有机的融合为一体,从而把计算机强大的计算处理能力和仪器硬件的测量、控制能力结合在一起,大大缩小了仪器硬件的成本和体积,并通过软件对数据进行显示、存储以及分析处理,广泛应用于民用和军用测量领域Ⅲ。作为虚拟仪器技术的一种,GPIB总线仪器以其良好的可靠性和高精度性使基于该总线的虚拟仪器在自动化测试领域中得到广泛的研究与应用。   GPIB总线是一个数字式的24线并行总线。它由16条信号线和8条接
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved