0 引言
自动测试设备是用于测试分立器件、集成电路、混合信号电路直流参数、交流参数和功能的测试设备。主要通过测试系统软件控制测试设备各单元对被测器件进行测试,以判定被测器件是否符合器件的规范要求。
1 自动测试设备的组成
自动测试设备主要由精密测量单元(PMU)、器件电压源(DPS)、电压电流源(VIS)、参考电压源(VS)、音频电压源(AS)、音频电压表(AVM)、时间测量单元(TIMER)、继电器矩阵、系统总线控制板(BUS)、计算机接口卡(IFC)等几部分组成。系统框图如图1所示。
本文主要介绍其中的电压电流源部分的设计原理及实现。
2 电压电流源的基本原理
电压电流源是自动测试系统必不可少的一部分,其可为被测试器件施加精确的恒定电压或恒定电流,并能回测其相对的电流值或电压值。因此,电压电流源主要有以下两种工作方式:
(1)加压测流(FVMI)方式。在FVMI方式中,驱动电压值通过数模
(2)加流测压(FIMV)方式。在FIMV方式中,驱动电流值通过数模转换器(
图2是电压电流源的逻辑框图。
[page]
3 电压电流源的设计细节
电压电流源的基本电路如图3所示,左半部分是电压电流源的加压加流电路,右半部分是测试电路。
该电路由主运放、电流扩展电路、量程电阻、反馈回路和差分
该电路的优点是将加压测流电路和加流测压电路很好地融合在一起,只需要切换一个继电器,便可实现加压和加流的切换,节省了加压测流和加流测压各需一套电路的烦琐,同时也节省了大省的元件。
4 工作原理
4.1 测试原理
以下以FIMV(加流测压)为例说明电路的原理,在FIMV模式下电路简化如图4。
由于电路引入了负反馈,U1构成同相求和运算电路,U2构成电压跟随器。令R1=R2=R3=R4=R。
由于UN1=UP1,由式(1)(3)可得:VIN=UO1-URO。即加在量程电阻两端上的电压值等于输入的电压值。由于U2的P2端虚断,故流过RO的电流绝大部分流入RL中,故电路可提供一稳定的电流,只要测试URO端的电压,即可测试在所加电流下负载的电压,从而实现加流测压。
加压测流与加流测压基本类似,在此不再赘述。[page]
4.2 箝位的实现
本电路可通过程序设定的箝位电压或电流值进行限压或限流保护,当电路检测到的电压或电流超过设定值时,即进行电路的自保护。自保护过程如下:加流测压时,控制箝位
4.3 量程计算
测试不同的电压或电流值需要不同的量程值,才能保证测试结果的准确性。故需要在测试前进行量程选择,量程的选择可通过程序实现。
加压测流时量程选择的计算公式为:
式中,MAX_V主运放的最大输出电压,FV为所施加的电压值,Ri为设定的箝位电流值,
加流测压时量程选择的计算公式为:
式中,MAX_V为主运放的最大输出电压,Rv为设定的箝位电压值,Fi所施加的电流值,Rf为量程电阻。实际取的Rf值取计算出的Rf的向下一个级数。
5 电路的改进
本电路中,输出端与负载直接相连,在测试小电阻时,会由于线损而产生测试误差,故在实际设计中,输出端与负载的相连可采用开尔文电桥接法,负载两端采用四线连接(电路输出的两端各以一对“施加线”和“传感线”连接负载)。
6 实验结果
实际测试中,运放可以选择低失调电压和低温漂的高精度运放,例如OP07。采样电阻使用低温漂2ppm、0.01%的高精度电阻。运放电源采用双24V电源,电流扩展电路用双36V电源,则本电压电流源的加压范围可从0V到21V,加流范围从0mA到200mA。电压测量和电流测量的精度大于0.1%(DAC和
上一篇:基于边界扫描的电路板快速测试系统设计
下一篇:日置四月推出电能质量分析仪PW3198
- 热门资源推荐
- 热门放大器推荐
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况