ADSP-TS201在无线电测向系统中的应用

发布者:快乐兔子最新更新时间:2011-06-01 关键字:ADSP-TS201  无线电  测向系统 手机看文章 扫描二维码
随时随地手机看文章

    无线电测向系统主要用来测定各类侦察目标的地理位置和移动情况,目前在技术侦察、电子对抗等领域已经发挥了重要的作用。无线电测向系统主要包括两方面功能:对空间信号波达方向(DOA)的估计和数字波束合成。波达方向的估计就是确定同时处在空间某一区域内多个感兴趣信号的空间位置(即多个信号到达阵列参考阵元的方位角及仰角);数字波束合成的目的是在增强期望信号的同时最大程度地抑制无用的干扰和噪声,并提取有用的信号特征以及信号所包含的信息,主要是根据信号环境的变化,自适应地改变各阵元的加权因子,在期望信号方向形成主波束,在干扰信号方向形成零陷,降低副瓣电平。本文所介绍的无线电测向系统要求在一定时间内完成测向和波束合成,需要选择合适的算法和快速的信号处理器来保证高速度、高灵敏度和高精度。

    1 TS201的主要特点

  TS201是ADI公司继ADSP-TS101之后又推出的新一代高性能Tiger-SHARC处理器,它集成了更大容量的存储器,性价比很高。它兼有ASIC和FPGA的信号处理性能和指令集处理器的高度可编程性与灵活性,适用于高性能、大存储量的信号处理和图像应用。其特点如下:

  (1)主频为600 MHz,即单指令周期为1.67 ns;有2个对等的处理单元来支持SIMD(单指令多数据)模式。

  (2)片内24 Mbit的存储空间,分成* Mbit的存储块。DSP可以在一个周期内从存储器的任意位置加载一个2×128 bit的数据。

  (3)系统内部有4条独立的128 bit数据总线,分别访问不同的4 Mbit内部存储块。

  (4)4个8 bit的全双工链路口,各自可以独立工作。在多处理器系统中,链路口可作为处理器之间的点到点通信,组成分布式的多处理器系统。14个DMA通道,可用于后台传输。DMA传输速率可达1 Gb/s。

  (5)三级复位,即上电复位、正常复位和DSP核复位。

  2 系统结构

  无线电测向系统由4个部分组成:阵列天线、多通道接收机、阵列信号处理器以及监控终端,如图1所示。


 


  该系统采用9元均匀面阵,多通道接收机完成信号的采样,再经过数字下变频,送到处理单元的9个通道。数字信号处理器为该系统的核心部分。由于考虑阵列信号处理的运算量较大(特征值分解及多次复矩阵相乘等运算),为了满足系统实时性的要求,故选用2片主频为600 MHz、内存为24 Mbit的TS201芯片作为本系统的处理器。其中一片用来实现测向算法,另一片用来实现波束合成算法。

  3 算法研究

  3.1 算法简介

  通过对各种测向和波束合成算法的比较,选择了多重信号分类MUSIC算法和基于干扰源定向的零点预处理算法。

  多重信号特征算法MUSIC(Multiple Signal CharacteriSTic)是一种基于矩阵特征空间的方法,它将观测空间分解为信号子空间和与之正交的噪声子空间。信号子空间由阵列接收到的数据协方差距阵中与信号对应的特征向量张成,而噪声子空间则由该协方差距阵中所有最小特征值(噪声方差)对应的特征向量张成。多重信号特征法就是利用这两个互补空间之间的正交特性来估计空间信号的方位,噪声子空间的所有向量都被用来构造谱估计器,所得空间方位谱中的峰值位置就是空间信号的方位估计。多重信号特征法大大提高了阵列信号处理的分辨率,可应用于任意形状的阵列和特性相异的阵元。

  基于干扰源定向的零点预处理算法是在对各种自适应波束合成算法研究的基础上,基于协方差矩阵的特征分解,结合采样协方差矩阵求逆(SMI)算法、基于特征空间(ESB)、预投影变换等自适应波束合成算法的知识,以及MUSIC 算法中对协方差矩阵进行特征分解提取出信号子空间等手段而提出的一种新的自适应波束合成方法。它与阵列形状无关,在对干扰源进行精确定向的情况下,提取干扰信号的噪声子空间对阵列观测数据进行零点预处理再进行传统的自适应波束合成,从而使得阵列方向图在干扰方向形成极深零陷的同时在期望方向形成主瓣。该算法对干扰的抑制能力很强,合成增益接近最优;对幅相误差、实际期望信号来向误差不敏感,有着很强的稳健性,适合实际使用。

  两种算法的流程图如图2、图3所示。

 

[page]


 

  3.2 仿真结果

  MUSIC算法:

  仿真实验中,天线阵列为9元均匀面阵,天线阵元间距是二分之一中心波长,信号点数500点,信号来波方向为[15° 100°,60° 320°]。仿真结果见图4。


 


  零点预处理算法:

  实验环境同MUSIC算法,设空间三个信号,其中期望信号来波方向为[100° 30°],干扰信号来波方向为[40° 30°,160° 30°]。仿真结果见图5。


 


  从图4可以看出,在[15° 100°]和[60° 320°]方向上出现了2个尖峰,说明MUSIC算法可以准确地测出空间2个信号的来向。从图5可以看出,零点预处理算法在期望方向形成主波束,在干扰方向形成门限。试验证明,选择这两种算法是正确合理的。[page]


 

  3.2 仿真结果

  MUSIC算法:

  仿真实验中,天线阵列为9元均匀面阵,天线阵元间距是二分之一中心波长,信号点数500点,信号来波方向为[15° 100°,60° 320°]。仿真结果见图4。


 


  零点预处理算法:

  实验环境同MUSIC算法,设空间三个信号,其中期望信号来波方向为[100° 30°],干扰信号来波方向为[40° 30°,160° 30°]。仿真结果见图5。


 


  从图4可以看出,在[15° 100°]和[60° 320°]方向上出现了2个尖峰,说明MUSIC算法可以准确地测出空间2个信号的来向。从图5可以看出,零点预处理算法在期望方向形成主波束,在干扰方向形成门限。试验证明,选择这两种算法是正确合理的。

关键字:ADSP-TS201  无线电  测向系统 引用地址:ADSP-TS201在无线电测向系统中的应用

上一篇:使用单片机对瓦斯气体浓度信息检测和报警设计
下一篇:基于光纤导光的数字全息微形变测量系统

推荐阅读最新更新时间:2024-03-30 22:14

无线电子工票如何助力智慧工厂
摘要:互联网零售商主动介入制造业,多元化需求对制造业生产效率和响应速度提出更高要求,这显然增加了工厂管理难度,传统工厂向智慧工厂转型成为大势所趋。本文将立足于智慧工厂行业为大家介绍无线电子工票方案。 传统的工票为条码菲,借助于条码技术,将每道工序用条码表示,工人在完成加工时剪下相应工序的菲票,下班后统一上交,专员用扫描设备将条码扫描进电脑,电脑根据条码的信息记录工人的生产内容和生产数量,并计算出工资。一般情况下,第二天才能知道前一天的生产进度。 电子工票采用RFID无线射频识别技术,将工人生产的数量和内容直接通过IC/ID卡的读写设备发送到电脑,并记录工人完成的数量和耗时,通过485总线或zigbee无线的方式传输至后台或
[物联网]
<font color='red'>无线电</font>子工票如何助力智慧工厂
乐山无线电发布涨价函,预计供应链紧张状况将持续
1月19日,乐山无线电向客户和代理商发布产品价格调整通知函。 乐山无线电表示,由于本年度市场剧烈变化,晶圆厂和上游原材料价格大幅持续上涨,导致我司成本亦不断增加,从目前市场供需趋势看,预计供应链紧张状况将持续较长的一段时间。 为保证产品质量的稳定以及供应的持续性,我司经过核算与慎重考虑,决定于2021年2月1号对以下产品价格做出相应调整: 1.IC和MOS产品现行价格上调15%以上。 2.ESD和二三极管类产品现行价格上调10%以上。 3.2021年2月1号起,所有订单(包含未交付)将按照新价格进行管控。 以下附产品价格调整通知函原文: 据天眼查显示,乐山无线电股份有限公司及其合资企业是中国最大的分立半导体器件制造基地,中国电
[手机便携]
乐山<font color='red'>无线电</font>发布涨价函,预计供应链紧张状况将持续
笔记本电脑无线电源接收电路原理图
下图是:笔记本电脑无线电源接收电路原理图 图 笔记本电脑无线电源接收电路原理图
[电源管理]
笔记本电脑<font color='red'>无线电</font>源接收电路原理图
空间谱估计测向系统设计
1 引言 随着电子技术的发展,电子对抗在武器系统中扮演着重要角色,电子对抗体系向多样化发展,诸如利用电子干扰设备直接干扰对方电子系统正常工作的电子对抗方法;利用武器弹药系统攻击对方电子设备。无论采用哪种方法赢得战场主动,其前提条件是要知道对方通讯设备、无线电通信以及其他发射无线电信号的电子设备的方位。此外,为了实施对多源(如多发引信、多台通信机或干扰机)的干扰,需有效利用我方干扰机的功率资源,确定发射源的方位,可采用转动接收天线的角度确定发射源方位。但这种方法存在测角精度和测量速度的矛盾,难以满足空间存在多个运动目标时,确定各目标方位的要求。而空间谱估计测向技术可实现对空域中多个目标的同时超分辨测向,因此,这里给出空间谱估计测向
[测试测量]
空间谱估计<font color='red'>测向</font><font color='red'>系统</font>设计
无线电池管理系统—提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态方案
无线电池管理系统——通过提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态系统解决方案 简介 乘用车和商用车的电气化正在步入市场渗透的新阶段。从技术可行性论证转向大规模生产高端优质汽车,这种转变是显而易见的。技术商业化为我们带来了更优质、更实惠的汽车。 但是,与传统的燃油车相比,人们仍然认为目前大多数的电动汽车(EV)价格昂贵,缺乏吸引力。因此,要确保成功且可持续的市场增长,降低成本和提高性能是关键。缩小尺寸、减轻重量和降低成本会影响电池系统在汽车整个生命周期内的竞争力。另一方面,延长续航里程也会大大影响其市场吸引力和竞争力。此外,随着越来越多的电动汽车达到其使用寿命,汽车制造商甚至将争夺从报废车辆中回收电池
[电源管理]
<font color='red'>无线电</font>池管理<font color='red'>系统</font>—提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态方案
ADSP-TS201无线电测向系统中的应用
    无线电测向系统主要用来测定各类侦察目标的地理位置和移动情况,目前在技术侦察、电子对抗等领域已经发挥了重要的作用。无线电测向系统主要包括两方面功能:对空间信号波达方向(DOA)的估计和数字波束合成。波达方向的估计就是确定同时处在空间某一区域内多个感兴趣信号的空间位置(即多个信号到达阵列参考阵元的方位角及仰角);数字波束合成的目的是在增强期望信号的同时最大程度地抑制无用的干扰和噪声,并提取有用的信号特征以及信号所包含的信息,主要是根据信号环境的变化,自适应地改变各阵元的加权因子,在期望信号方向形成主波束,在干扰信号方向形成零陷,降低副瓣电平。本文所介绍的无线电测向系统要求在一定时间内完成测向和波束合成,需要选择合适的算法和快速
[测试测量]
LTC4125单片式全桥谐振驱动器简化无线电源设计
LTC4125 是一款简单和高性能的单片式全桥谐振驱动器,其能够把超过 5W 的功率以无线的方式输送至一个正确调谐的接收器。该器件可控制流入串接式发送线圈 LC 网络中的,以设计一种简单、安全和多用途的无线功率发送器。 LTC4125 可自动地调节其驱动频率以与 LC 网络谐振频率相匹配。这种 AutoResonant 切换使得器件能够采用一个低电压输入 (3V 至 5.5V) 把最大的功率输送至一个调谐式接收器。为优化系统效率,LTC4125 采用了一种周期性的发送功率搜索,并根据接收器负载要求来调节传输功率。该器件在故障情况下或检测到某种时停止输送功率。
[机器人]
广播无线电前端IC兼容多标准
  爱特梅尔公司推出高集成度的广播无线电前端IC产品ATR4262,具备车载接收性能,面向高性能应用而设计,尤其是移动设备如车载无线电。ATR4262与大多数无线电标准兼容,包括HD Radio、DRM (世界数字广播) 以及 AM/FM。   ATR4262是全频段调谐器,覆盖全球所有的AM/FM频率。其FM部分覆盖70 MHz 到166 MHz的频率范围,包括美国的天气频段和HD Radio频段。AM频段覆盖150 kHz 到 30 MHz的整个广播频段,包括现代的DRM系统。   ATR4262采用优化的材料清单,因此能降低成本。例如,它不需任何额外部件就能实现天气频段功能。此外, 也无需外接晶振电路,因为ATR4262
[焦点新闻]
广播<font color='red'>无线电</font>前端IC兼容多标准
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved