高压开关柜隔离触头温度监测

发布者:雅逸之风最新更新时间:2011-06-18 关键字:高压开关柜  温度监测 手机看文章 扫描二维码
随时随地手机看文章

1 引言

  高压开关柜隔离触头的温度监测一直是电力工业安全运行的重大课题之一,但是由于触头处在强电磁场、高电压环境中,所以目前的监测方法都是围绕何实现系统的抗强电磁场干扰和高电压的隔离问题,主要方法有感温纸测温、红外温度测量、F-P 光学式测量、感应窃电方式测量、光纤传输方式和红外无线传输等。而光纤光栅传感器集测量和传输于一体,采用光波的形式进行测量和传输,具有体积小、重量轻、传输损耗小、不受电磁场干扰和良好的绝缘性能等优点,因此非常适合高压开关柜的触头温度测量环境。基于以上优点,本文提出了一种采用光纤光栅温度传感器的触头温度测量方案,同时采用合理的安装技术解决了应变交叉敏感的影响。

  2 光纤光栅传感器原理

  光纤光栅传感器既能实现温度的测量,又能实现应变的测量,这两个物理量都能引起光纤光栅布拉格波长的变化。

  光纤光栅的温度传感特性是由光纤光栅的热光效应和热膨胀效应引起的,热光效应引起光纤光栅的有效折射率的变化,而热膨胀效应引起光栅的栅格周期变化。当光纤光栅传感器所处的温度场变化时,可推导出温度对布拉格波长变化的影响为

  

 

  式中 a 为光纤的热膨胀系数,主要引起栅格周期的变化,取5.5′10-7;x 为光纤的热光系数,主要引起光纤的折射率变化,取5.5′10-6。光纤光栅传感器的应变特性是弹光效应和弹性效应共同作用的结果,弹性效应会改变光栅的栅格周期,弹光效应会改变光纤的有效折射率,其传感特性可以表示为[13]。

  

 

  式中 Pe为光纤的有效弹性系数,Pe =0.22。正因为光纤光栅传感器既能测量温度又能测量应变,所以在对高压开关柜隔离触头实行温度测量时,就要想办法屏蔽由于开关柜振动引起的应变对温度测量精度的影响,这就是光纤光栅传感器的应变交叉敏感。

  3 触头温度测量系统方案

  3.1 光纤光栅传感器的安装

  高压开关柜的断路器分为移动小车和开关柜两部分,高压开关柜的触头共有六个,分别分布在上侧和下侧的A、B、C 三相上,那么为了保证系统的可靠性,必须对六个触头的温度同时进行监测。如式(1)、(2)所示,由于光纤光栅传感器对温度、应变同时敏感,为了保证温度测量精度,必须屏蔽应变的交叉敏感影响,即断路器的分、合过程中产生的任何应变都不应传递给光纤光栅传感器。本系统是通过把光纤光栅温度传感器单端固定在静触头上,来屏蔽触头在碰撞过程中产生的应变。另外,为了保证光纤光栅温度传感器对触头各点温度测量的均匀性,系统充分利用静触头的中间空位,把温度传感器固定在静触头的中间位置,图1是传感器在单个静触头的安装示意图。当动触头与静触头在分、合时,在静触头的圆周位置产生应变,而在其中心不存在应变,那么应变也就传递不到光纤光栅传感器了。这种安装方案既保证了温度的测量精度又屏蔽了由于振动引起的应变交叉敏感影响。

  

 

  3.2 光路复用方案

  六个光纤光栅温度传感器的同时测量就涉及到光路的复用问题,光纤光栅传感器的复用可以采用波分复用(WDM)、空分复用(SDM)或时分复用(TDM)方式,本系统是采用空分复用和波分复用方法。如图2 所示,用1′8 耦合器实现对传感器的空分复用,这样可以避免采用单一波分复用的弊端,即多个传感器串连在一根光纤上,在其中一个传感器损坏时会影响其它传感器信号的传输;同时在传感器工作波长的选择上又采用了波分复用方式,用来提高系统的测量速度,即在波长解调时采用一个扫描周期可以实现六个传感器的同时测量。

  

[page]

  在图2 中,A、B、C三相的六个光纤光栅温度传感器处于高电压侧,分别安装在静触头孔径内,而耦合器、波长解调器、控制器以及数据处理电路都处于地电位侧,安装在控制室内,采用长距离的光纤传输来实现高电压侧绝缘隔离。图中的A1、B1、C1,A2、B2、C2是本文设计的光纤光栅温度传感器,分别分布在隔离触头的上侧和下侧A、B、C 三相上,在常温下传感器的波长分别为1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,灵敏度为0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,测量范围为0"110℃;耦合器为

  由7 个3dB耦合器组合而成的1′8耦合器;波长解调器为采用压电陶瓷驱动标准具实现波长扫描,其工作波长范围为1548"1558nm,覆盖6 个传感器在0"110℃温度变化时的所有波长带;控制器在数据处理器的控制下实现波长解调器的扫描。

  3.3 触头温度模型

  高压开关柜在运行时,触头、母线、电流互感器、柜体等构成了多个热源,高压开关柜及内部各部件又构成了复杂的热阻网络[14]。在此系统中,要通过理论推导出触头温升与光纤光栅传感器温升间的数学关系是比较困难的,因此本文通过试验方法建立了它们之间的数学模型。

  温升实验是在10kV 高压开关柜上进行的,实验时三相触头接触正常,工作额定电流为1kA,室温为25℃。图3 是上隔离触头B 相的温升过程曲线,可以看出光纤光栅传感器测量的温升变化要比触头的实际温升变化慢,但它们的变化趋势是相同的,大约在3h 以后温度场变化趋于稳定。测量温度与实际温度间的差值是由于传感器采用非接触方式测量温度,它依靠静触头的辐射来传递热量。表1 是其温升测量数据。

  

 

  可以看出在开关柜触头接触正常、温度变化稳定后各个触头的实际温升值DTC 与对应的传感器温升值DTS之间的比例关系都在1.43 附近,取其平均值作为试验结果,可建立触头的实际温度与传感器的测量温度间的数学关系式为

  TC="K"(TS-T)+T (3)

  式中 K="1".43;TS为光纤光栅温度传感器测量的温度值;T为高压开关柜环境温度。

  3.4 系统的抗电磁干扰性分析

  为

  了检验光纤光栅传感系统的抗电磁干扰能力,在高压开关柜满负荷工作,并且传感器测量趋于稳定的情况下,通过对开关柜采用突然掉电的方式来检测温度测量结果与电磁场的关系[15-16],实现抗电磁干扰能力的实验。图4 是在触头温升趋于稳定后,在试验过程中安排了两次停电并在一次侧的B 相触头上测量的温度数据,图4(a)是电流的变化过程图,图4(b)是电流变化引起的触头温度变化曲线。可见在母线失去电流的情况下,引起了触头温度的下降,但在恢复送电后又很快开始上升。从曲线可以看出测量的触头温度对突然的停电与送电做出了反应,但这种温度的升降是渐变的而不是突变的,说明电磁场的存在对传输光纤以及光纤光栅温度传感器没有影响。如果电磁场的存在使测温系统显示的温度较实际温度偏高或偏低,那么当开关柜母线中一旦失去电流,电磁场消失时,温度显示会立即跳变到“实际值”,但这种跳变现象在实际试验中并未发生。因此说明光纤光栅触头测温系统具有很强的抗电磁干扰能力。

  4 实验结果

  本光纤光栅触头温度测量系统在变电站10kV高压开关柜上进行了成功试用,图5 是在高压开关柜工作在70%的额定负荷范围时对一次侧B相触头在24 小时的温度监测记录,它反应了全天触头温度的变化过程。从图中可以看出,从午夜0点到早晨6 点之间触头的温度最低,这一方面是由于用电负荷较小,另一方面与气温较低有关;从早晨6 点开始随着用电负荷的增大,触头的温度也开始升高,到9点用电负荷趋于稳定,但由于气温的逐渐升高触头温度也开始上升,到14 点时温度达到最高;从14点到18点之间由于气温的降低,触头的温度也逐渐变小;同时从18 点后,由于用电负荷的增大,触头温度又开始上升,到22 点时达到最高;此后随着用电负荷的减小,触头温度也逐渐降低。通过对24小时触头温度的记录分析可以看出,光纤光栅触头温度测量系统能够正常工作,其记录数据正确反应了触头温度与开关柜的工作负荷和周围空气温度之间的变化关系,说明了光纤光栅触头温度测量系统的方案是可行的。

  

 

  5 结论

  本文利用光纤光栅传感器的体积小、抗电磁干扰能力强、绝缘性好等优点,代替电子类传感器实现了对高压开关柜隔离触头的温度监测,此方案不需要复杂的绝缘设计,因此具有简单、可靠的优点。此方案中,解决了光纤光栅温度传感器的应变交叉敏感影响,在光路的复用上采用了空分复用加波分复用的方案,提高了系统的可靠性和实时性。此系统在10kV 高压开关柜上进行了测试,系统能够正常运行,说明本方案是可行的。

 

 

关键字:高压开关柜  温度监测 引用地址:高压开关柜隔离触头温度监测

上一篇:基于STCl2C5410AD的电动车无刷电机控制器检测设计
下一篇:基于PLL的测试测量时钟恢复方案

推荐阅读最新更新时间:2024-03-30 22:15

基于ZigBee的高压开关柜无线温湿度监测系统
       1 引言   发电厂、变电站的高压开关柜内的母线接头和室外刀闸开关等重要设备,在长期运行过程中,因老化或接触电阻过大而发热。由于这些发热部位的温湿度没有得到及时有效的监测,往往导致火灾和大面积停电等事故的发生。实现母线接头和刀闸开关等关键部位的温湿度实时在线监测,防止开关过热,可以显著地减少此类事故的发生。在工程实践中,高压大电流设备内的接头部位都具有裸露高压,因此这些部位的温湿度很难监测,通常的温湿度测量方法因无法解决高压绝缘问题而不能使用。   目前,高压大电流设备内的母线接头部位温湿度监测的方法主要有红外测量、光纤测量和无线测量。光纤测量技术采用光导纤维传输温湿度信号,光导纤维具有优异的绝缘性能,能
[网络通信]
基于uC/OS-II的远程多点温度监测系统
引言   随着Internet的发展和应用,越来越多的嵌入式系统接入网络。然而,大部分嵌入式系统都是作为B/S模式中的应用服务器,必须随时对客户机的请求做出回应,要求具有较强的实时性。mC/OS-II是近年来发展迅速的一个开放源码实时操作系统,具有移植性好、可裁剪、可固化的优点。将mC/OS-II引入网络嵌入式系统,既可以实现系统的实时性要求,同时可以提高系统的可靠性,易于调试程序。      图1 系统硬件结构框图      图2 系统TCP/IP协议部分程序流程图     系统硬件设计   本系统设计中采用美国Cygnal公司生产的集成混合信号SoC芯片C8051F020,其内核与8051兼容。当它工作
[工业控制]
基于uC/OS-II的远程多点<font color='red'>温度</font><font color='red'>监测</font>系统
温度监测功能4相µModule稳压器的设计
  LTM4644是一款每路输出可提供4A电流的四通道DC/DC降压型μModule(微型模块)稳压器。输出可通过并联形成一个阵列以提供高达16A的电流能力。封装中内置了开关控制器、功率FET、电感器和支持组件。LTM4644可在一个4V至14V或2.375V至14V(采用一个外部偏置电源)的输入电压范围内运作,支持一个0.6V至5.5V(各由单个外部电阻器来设定)的输出电压范围。该器件的高效率设计使每个通道能够提供4A连续(5A峰值)输出电流。仅需大容量的输入和输出电容器。
[电源管理]
具<font color='red'>温度</font><font color='red'>监测</font>功能4相µModule稳压器的设计
大体积混凝土无线温度监测系统
  引言   施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。另外,混凝土硬化后随温度降低产生收缩。由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,需对混凝土浇筑过程中温度变化实施实时监测。传统监测方法要配专职测温人员,使用电子测温仪按时按孔测温,并记录测温数据及时间。本设计为一种无线温度监测系统,能定时、自动对温
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved