运动员(听觉)神经-运动反应时的测量系统

发布者:mu22最新更新时间:2011-07-05 关键字:神经-运动  测量系统 手机看文章 扫描二维码
随时随地手机看文章

    本文实现了一个测量运动员(听觉)神经-运动反应时的系统,以提高运动员听到发令枪后的起跑速度。该系统是通过声音传感器和加速度传感器检测运动员听到发令枪到起跑所需要的时间,即运动员的神经-运动反应时,再通过无线数据传输模块将数据传送到PC机进行显示,并可根据反应时记录进行处理和绘制成反应时曲线,能够直观地了解运动员反应时的变化及趋势。

  系统结构及其原理

  系统结构

  本系统主要实现(听觉)神经-运动反应时的测定。方法是通过声音传感器检测发令枪的声音,用加速度传感器检测运动员起跑的时刻,记录运动员听到发令枪到起跑所需要的时间,再通过无线数据传输模块将数据传送到基站进行记录和处理。系统由反应时测定模块、通信模块、数据记录处理模块三部分组成,结构如图1所示。

  

  图1系统结构框图

  反应时测定模块用单片机作为核心部件,加上声音传感器和加速度传感器检测电路,通过单片机的内部计数器记录运动员的起跑反应时,并将记录的数据按照一定的格式编码,通过串口送至无线发送模块,实现与PC机的无线通信。

  通信模块主要用PTR2000无线数传模块实现无线数据的传输。

  数据记录处理模块通过串行通信的方式接收无线数传模块传输的数据,并送到由PC机构成的基站进行记录、处理和显示。

  系统设计基本原理

  测量准备和系统自检

  系统在反应时测量模块上设置了一个按钮,在每次测量前,按此按钮启动系统自检,通过单片机检查与之相连的各个部件,如存储器、加速度传感器、声音传感器等的状态,以及无线通信系统能否正常工作。通过无线传送模块,将检测到的各个部件的状态发送到接收端,若接收端接收到正常的信号,则记录端可以通知开始测量;若接收不到,则必须检查、调试,或者更换测量系统,直到接收端接收到正常的信号方可开始测量。

  数据采集

  在系统自检完成之后,如果各个部件工作正常,就可以开始测量反应时。声音传感器检测到发令枪的声音信号后,计数器开始计数,并查询加速度传感器的信号,在检测到加速度传感器信号后停止计数,并将计数值保存在发送缓冲区,数据采集过程结束。

  数据的无线发送和接收

  在单片机数据采集完成之后,即开始数据的无线发送。在发送之前,对采集的数据按照无线数传模块的要求进行编码,然后将数据通过无线数传模块按照从高位到低位的顺序进行发送。在无线接收端,把接收到的数据通过电平转换和RS-232串行接口送至PC机进行处理和显示。

  数据的处理和显示

  由PC机构成的基站从RS-232串行接口接收到数据后,通过运动员起跑反应时处理软件对数据进行处理、存储、显示和分析。

  系统硬件设计

  从硬件角度看,系统可以分成单片机模块、声音检测模块、运动检测模块和无线数传模块等几部分。

  单片机模块

  在本系统中,考虑到反应时测量装置是安装在运动员小腿上,对输入输出口的数量需求不多,因此在选择单片机时,应选择体积小、功耗小的作为系统前端数据测量的核心部件,本系统采用的是Atmel公司生产的8位单片机AT89C2051。

  声音检测模块

  声音检测是本系统设计中的一个关键部分,要求具有较好的灵敏度和抗干扰能力。

  驻极体传声器是一种微型声电转换器,这种传声器具有灵敏度高、频率响应范围宽和体积小等优点。在本系统中选用驻极体话筒作为声音检测部分的声音传感器,用其将声音信号变换成电信号。

  声音检测模块设计的难点和重点是滤除噪音信号。在此模块的设计过程中,经过多次实验,最终确定了本模块的电路和相关参数。本系统采取幅度比较法实现声音检测的功能。因为发令枪的声音信号一般幅度较大,可以直接进行放大,通过比较器与阈值电压相比,当声音信号大于一定幅度时产生翻转信号。主要考虑的问题是如何对驻极体话筒检测到的微弱信号进行放大处理。在本系统中采用三极管9013构成单级放大电路对信号进行放大。经过多次实验发现,输出电压大于4V时,声音信号振动幅度较大。再加上比较电路就构成了本系统的声音检测电路,如图2所示。在此电路中,用R5和R6分压电路产生一个阈值电压,在实际设计中设置为4V。电压比较器LM339的OUT2产生声音信号自检电压,若声音检测无故障,应输出高电平;OUT1作为声音检测信号输出脚与单片机P1.2口相连,当发令枪响起时输出一个脉冲信号。

  

 

  图2 声音检测电路[page]

  运动检测模块

  运动检测模块选用了美国ADI公司生产的单片加速度传感器ADXL105作为运动检测传感器,内含加速度传感器和信号调理器。这是一种差容式力平衡加速度传感器,利用变间隙的方法,把被测的加速度转换为电容器的电容量变化。内部的电容分压电路,提供与加速度大小成正比的模拟输出电压,其相位则取决于加速度的方向,无需外加任何有源器件即可接到ADC的输入端。既可以用来测量静态加速度(如重力加速度或倾角等),又可用来测量动态加速度(如振动等)。

  由于ADXL105可直接输出模拟信号,因此只需要通过比较器将ADXL105的输出电压与阈值电压相比较,当加速度大于某一阈值时输出高电平。其原理电路如图3所示。LM339的OUT3脚输出运动检测信号,接单片机的P1.4口;OUT4脚输出运动自检信号,接单片机的P1.5口。

  

 

  图3 运动检测模块电路原理图

  无线数传模块

  本系统中采用基于RF芯片nRF401的无线数传PTR2000模块。nRF401是NORDIC公司最新推出的单片无线收发一体的芯片,包括高频发射、高频接收、PLL合成、FSK调制、FSK解调及多频道切换等部件,是目前集成度最高的一种无线数传芯片。PTR2000既可与80C51、89C2051、68HC08、PIC等各种单片机的串口或I/O口直接连接,也可通过电平转换芯片MAX232与PC机进行串口通信。

  系统软件设计

  根据本系统的设计要求,将系统软件划分为发射端软件和接收端软件两部分分别进行设计。

  发射端软件

  单片机部分的软件主要可以分为以下几个模块:自检模块、发射模块和计时模块。单片机主程序流程图如图4所示。

  

 

  图4 单片机端主程序流程图

  接收端软件

  在本系统中接收端为PC机,采用VB语言进行编程。在标准RS-232串口通信方面,VB提供了具有强大功能的通信控件Mscomm。该控件可设置串行通信的数据发送和接收,对串口状态及串口通信的信息格式和协议进行设置。这是一个标准的10位串口通信,包括8位数据、1位起始位和1位停止位。在发送或接收数据过程中触发OnComm事件,通过编程访问CommEvent的属性了解通信事件的类型,进行各自的处理。每个通信控件对应一个串口,可以设计多个通信控件来访问多个通信口。控件提供了功能完善的串口数据的发送和接收功能,Mscomm控件具有两种处理方式:事件驱动方式,由Mscomm控件的OnComm事件捕获并处理通信错误及事件;查询方式,通过检查CommEvent属性的值来判断事件和错误。在本系统中采用的是事件驱动方式。

  通过VB编程工具强大的图形编程方法,可以实现运动员反应曲线图的绘制。并可对图形进行放大、缩小以及移动,方便地显示出运动员反应时的变化趋势。基于以上各个程序模块的设计,本软件实现了对数据的实时采集与发射/接收以及稳定显示,使得整个系统具有很高的实用价值。

    结语

    本测量系统采用的方法在国内处于领先水平,与之前的起跑反应时模拟测定仪相比,不但可以在运动场上直接、精确地测定运动员的起跑反应时,而且可以对反应时进行分析和综合,促进对运动员反应时的研究以及提高运动员的训练水平,为运动员的选材和训练提供科学的参考依据。

 

 

关键字:神经-运动  测量系统 引用地址:运动员(听觉)神经-运动反应时的测量系统

上一篇:测试和测量系统的选择
下一篇:选择测试和测量系统时应考虑的因素

推荐阅读最新更新时间:2024-03-30 22:15

基于AD8302的相位差测量系统的改进和设计
在实际的雷达装备性能测试中,经常会遇到需要检测两个信号之间的相位差的问题,以此来获得一些雷达信号的频率、方位等特性。在研究网络相频特性中,这也是不可缺少的重要方面。因此在某些领域精确地测量两个信号之间的相位差具有重要的意义,比如在比相法测向中。 美国ADI推出的AD8302型相位检测芯片。该芯片能精确测量2个独立的射频(RF)、中频(IF)或低频信号的增益、相位差及频率。但该芯片的测量相位差的范围只有0°~180°。本文通过提出一种电路结构,使用AD8302进行相位比较,测量相位差的范围可达0°~360°。 鉴相芯片AD8302简介 芯片AD8302的功能框图如图1所示,它内部包含2个精密匹配的宽带对数放大器、1个宽带相位检测器、
[测试测量]
基于AD8302的相位差<font color='red'>测量系统</font>的改进和设计
霍尔传感器在测量系统中的应用
电流的测量采用磁平衡式霍尔电流传感器 传感器可测量从直流到100kHz的交流量 在自动测控系统中,常需要测量和显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。 采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。 因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。在此提出了利用霍尔传感器对电参量特别是对高电压、大电流的参数
[嵌入式]
基于AD8302相位差测量系统的改进设计方案
美国ADI推出的AD8302型相位检测芯片。该芯片能精确测量2个独立的射频(RF)、中频(IF)或低频信号的增益、相位差及频率。但该芯片的测量相位差的范围只有0°~180°。 鉴相芯片AD8302简介 芯片AD8302的功能框图如图1所示,它内部包含2个精密匹配的宽带对数放大器、1个宽带相位检测器、1.8V精密基准源,以及模拟标定电路和接口电路,AD8302能精确测量两个信号之间的幅度和相位差主要基于对数放大器的对数压缩功能,通过精密匹配的两个宽带对数检波器来实现对两输入通道的幅度和相位差测量,能同时测量从低频到2.7GHz频率范围内2个输入信号之间的增益(亦称幅度比)和相位差。AD8302不仅能测量放大器、混频器等电路的增益和相
[电源管理]
基于AD8302相位差<font color='red'>测量系统</font>的改进设计方案
ADI实验室电路:集成冷结补偿的K型热电偶测量系统
电路功能与优势 图1所示电路是一款完整的热电偶信号调理电路,带有冷结补偿功能并后接一个16位∑-△型模数转换器(ADC)。 AD8495热电偶放大器为测量K型热电偶温度提供了一种简单的低成本解决方案,且包含冷结补偿功能。 AD8495中的固定增益仪表放大器可放大热电偶的小电压,以提供5 mV/°C输出。该放大器具有高共模抑制性能,能够抑制热电偶的长引线可能会拾取的共模噪声。如需额外保护,该放大器的高阻抗输入端允许轻松添加额外的滤波措施。 AD8476差分放大器提供正确的信号电平和共模电压,以驱动 AD7790 16位Σ-Δ 型ADC。 该电路为热电偶信号调理和高分辨率模数转换提供了一种紧凑的低成本解决方案。 图1
[模拟电子]
ADI实验室电路:集成冷结补偿的K型热电偶<font color='red'>测量系统</font>
基于MSP430F149的阻抗测量系统设计
引 言 医学阻抗测量是利用生物组织与器官的电特性及其变化,提取与生物体生理、病理状况相关的生物医学信息的一种检测技术。它通常借助于驱动电极向检测对象送入一微小的交变电流(或电压)信号,同时测量两极的电压(或电流)信号,从而计算出相应阻抗,然后应用于不同目的。 不同组织的阻抗值也不相同,因此阻抗可以作为区分不同组织的一项重要指标;同时随着生理活动的变化,同一组织阻抗值也会发生改变,因此阻抗可以作为检测组织是否发生病变的一个依据。 生物组织的阻抗受多种因素影响呈现出各种特性,其中最主要的就是它的频率特性。本设计通过MSP430F149控制AD9852产生不同幅度、不同频率的正弦波。该正弦波经过滤波、放大后作用于人体,
[单片机]
基于MSP430F149的阻抗<font color='red'>测量系统</font>设计
基于AVR单片机的轮胎内径测量系统设计
轮胎模具用于成型轮胎,其加工质量对轮胎的生产非常重要。为了生产出好的轮胎,必须对轮胎模具加工质量提出高的要求。传统的加工质量检测法主要是靠百分表,人为采集数据后分析得出加工质量报告。这种办法的局限性是需要操作者有一定的工作经验,而且取样过程人为控制,精度受到一定影响。近几年来,轮胎模具工业随着轮胎的大量需求而得到了快速发展,传统的检测方法不能满足市场需求。光栅尺是一种数字位移测量设备,测量范围可达几十米,测量精确在微米级;激光测距仪是一种非接触测量设备,可以对不规则表面的目标位移进行测量,但是测量距离较小。将大范同的光栅尺和非接触测量的激光测距仪结合起来就可以实现对不规则面的目标距离进行测量。将光栅尺读头与激光测距仪固定在机械横梁
[单片机]
基于AVR单片机的轮胎内径<font color='red'>测量系统</font>设计
单元电池电压测量系统设计
1 引 言 应急电源多采用蓄电池提供能源,为了获得足够高的电压通常采用多块电池串联的方式进行工作,例如用24、32或48节铅酸蓄电池组成。电池组的失效往往是从单块电池失效开始的,尤其对于使用时间较长但又不超过使用期限的电池组,依靠维护人员的日常检查既耗时又不方便,也不符合现代管理的需要。因此,对于单块电池的电压进行自动巡检,以便及时发现问题,就变得极为重要。而对电池组单块电池电压进行测量存在以下主要技术难点。 (1)从降低成本角度考虑可采用多路选择方式测量,但是其电压范围超出了标准模拟开关产品的工作电压范围而采用机械继电器将在速度、使用寿命、工作的可靠性方面都难以令人满意。 (2)为确保测量的精度,单元电池采用悬浮测量,系统
[电源管理]
单元电池电压<font color='red'>测量系统</font>设计
数字滤波器滤除电子测量系统中工频及其谐波干扰的研究
摘 要:在电子测量中工频是主要的噪声干扰源之一,若不滤除将大大影响测量精度。而传统的模拟电路滤波器在精度方面无法与数字滤波器相比;另外对多阻带滤波器的设计摸拟电路更是无法实现。本设计用FIR(Finite Impulse Response)数字滤波原理设计了阻带范围分别为48"52 Hz,98"102 Hz,148"152 Hz的三阻带数字滤波器,经仿真实验证明其对电子测量系统中的工频50 Hz及其二次谐波和三次谐波干扰将衰减30 dB。对去噪后的信号进行分析,大大提高了测试系统的精度,整个过程分为多阻带滤波器的数学建模和滤波算法实现,并分析比较了不同窗函数和阶数的变化对滤波性能的影响。   关键词:工频噪声抑制;FIR多阻带数
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved