A/D变换器对频谱仪和信号分析仪动态范围的影响

发布者:EuphoricMelody最新更新时间:2011-12-03 关键字:AD变换器  频谱仪  信号分析仪 手机看文章 扫描二维码
随时随地手机看文章

ADC动态指标
信噪比
对于理想的ADC来说,在奈奎斯特带宽内的量化误差为一白噪声随机信号,其量化方差。其中q=2-N为A/D变换器的量化间距,N为A/D字长N位。
量化噪声的信噪比为:

SNR=6.02N+1.76+101g(fs/2B)   (1)

式中,N是ADC的位数,fs是采样频率,B是模拟输入信号的带宽。上式右边第三项表示增加采样频率(过采样)可提高信噪比。

有效位数

实际上ADC的误差表现为静态及动态非线性误差,并且动态误差随输入信号压摆率的增加而变大。因此实际测量的信噪比要比理论上的小一些。计算有效位数(ENOB)可以从对方程(1)的N求解得到。
ENOB(N)=[SNR-1.76-101g(fs/2B)]/6.02   (2)

频谱仪和信号分析仪内部的ADC指标评估

ADC动态所影响的信号分析仪指标

典型的频谱仪电路框图如图1所示。其中ADC处于中频信号之后,对中频(或视频)信号进行采样和转换。ADC的性能影响到频谱仪的噪声和信噪比等指标,还影响到频谱仪的失真指标,包括谐波、杂散和互调失真。

           典型的频谱仪电路框图
                                              典型的频谱仪电路框图

 

对于现代信号分析仪来说,中频和视频信号的处理基本采用数字技术和矢量分析(IQ分析)技术。因此,DAC所造成的影响就显得十分重要。

举例分析ADC动态所影响的信号分析仪指标以罗德与施瓦茨公司FSQ为例,对于A/D转换和数据分析部分进一步分析,框图如图2。

                  ADC动态所影响的信号分析仪
                                        ADC动态所影响的信号分析仪

·ADC的量化噪声和信噪比理论分析

对于FSQ的窄带IQ分析模块,采用的ADC(标注②和③)为14位81.6MHz采样,根据公式(1),信噪比理论值归一化到1Hz带宽(B=1Hz)为:

SNR1(1Hz)=6.02N+1.76+101g(fs/2B)=6.02×14+1.76+101g(81.6×106/2)=162dBc/Hz

所以,对于窄带IQ分析模块,ADC的量化噪声理论值为 -162dBc/Hz。

对于FSQ的宽带扩展IQ分析模块(FSQ-B72),采用的ADC(标注①)为8位326.4MHz采样,根据公式(1),信噪比理论值归一化到1Hz带宽(B=1Hz)为:

SNR2(1Hz)=6.02N+1.76+101g(fs/2B)=6.02×8+1.76+101g(326.4×106/2)=132dBc/Hz

所以,对于宽带IQ分析模块,ADC的量化噪声理论值为 -132dBc/Hz。

相对于实际信号分析仪,根据ADC之前的滤波器带宽BW,可以计算出分析仪在相应带宽下可以达到的实际噪声。噪声计算公式为:

N=-SNR(1Hz)+101g(BW/1Hz)

对于窄带IQ分析模块,当滤波器带宽为10MHz(被测信号带宽小于10MHz)时,ADC的量化噪声理论值为

N=-162+101g(BW/1Hz)=-92dBc

对于宽带IQ分析模块,当滤波器带宽为60MHz(被测信号带宽小于60MHz

)ADC的量化噪声理论值为

N=-132+101g(BW/1Hz)=-54dBc

·罗德与施瓦茨公司FSQ的IQ分析动态指标

对于实际的信号分析仪,影响其动态指标的因素除了ADC以外还有很多。可以根据分析仪指标手册中的实际动态指标进行分析评价。

根据公式(2),利用分析仪实际信噪比指标计算实际ADC的有效位数:

ENOB(N)=[SNR-1.76-101g(fs/2B)]/6.02

FSQ-B72(带宽扩展选件)的信噪比和有效位数指标:

信噪比和有效位数指标

FSQ-B72的杂散指标:

FSQ-B72的杂散指标

FSQ-B72的本底噪声指标:-153dBm/Hz

满量程信号输入时,针对宽带IQ信号,例如30MHz带宽,此时信噪比为:

SNR(dBc)=SNR0(dBc/Hz)-101g(BW/1Hz)=125-101g(30×106/1Hz)

对于带宽30MHz的信号,SNR>50dBc。

某常见频谱仪宽带IQ分析选件的动态指标

某常见频谱仪宽带IQ分析选件的指标:在14GHz左右噪声功率密度为-123dBfs/Hz。

根据公式(2),利用频谱仪实际信噪比指标计算实际ADC的有效位数为7位。

杂散响应为-68dBc, 互调响应为-75dBc,本底噪声-153dBm/Hz。

在14GHz满量程信号输入时,针对宽带IQ信号,例如30MHz带宽,此时信噪比为:

SNR(dBc)=SNR0(dBc/Hz)-101g(BW/1Hz)=123-101g(30×106/1Hz)=48(dBc)

对于带宽30MHz的信号,SNR>48dBc。

 

结语

在分析频谱仪和信号分析仪动态指标时,要综合考虑信噪比、杂散和互调指标。从上文分析看出,对于宽带信号,影响动态范围最主要的因素为信噪比,其它失真诸如杂散和互调等,在分析带宽较大的情况下,会淹没在噪声内。

例如,FSQ-B72的宽带信号分析在信号带宽为30MHz时,动态范围大于50dBc,随着带宽的增加,动态范围减小。2.2.3中所述频谱仪宽带IQ分析选件的宽带信号分析在信号带宽为30MHz时,输入频率为14GHz左右时动态范围大于48dBc。

关键字:AD变换器  频谱仪  信号分析仪 引用地址:A/D变换器对频谱仪和信号分析仪动态范围的影响

上一篇:测量脉搏血氧方案设计
下一篇:基于MSP430F449设计的数字频率计

推荐阅读最新更新时间:2024-03-30 22:21

采用矢量信号分析仪来检测非线性失真的解决方案
移动通信网络所用功率放大器的一个关键性能参数为 非线性失真。但过度的非线性失真会使误码率( BER)提高,导致移动通信网络中所传输的语音及数据信号质量下降。幸运的是,该矢量信号分析仪不仅可以用于精确地检测矢量及标量的调制误差,如误差向量幅度( EVM)特性,还可用于评估放大器及系统失真特性。因分析仪进行有效测量时亦无需任何特殊检测环境或检测信号,该分析仪可在移动通信网络正常运行的情况下分析来自基站的冲击信号。 通常依赖量程可调的伏特计或频谱分析仪,采用双音或多音方法1来确定被测器件(DUT)的压缩点。网络分析仪采用功率扫描作类似分析。这两种方法中所用的信号皆为测试信号或是仅仅优化用于频谱带宽或统计分布的信号,并非实际工作环境下的信
[测试测量]
采用矢量<font color='red'>信号分析仪</font>来检测非线性失真的解决方案
频谱仪多种内核通信机制的方案设计
多核体系结构为性能提高和节能计算等领域开辟了新的方向。核与核之间的连接方式、通信协调方式等都是研究重点。本课题的研究基于手持式频谱分析仪系统平台,该系统采用的是ARM、DSP、FPGA的三核架构。各核心分别完成不同的任务,然后核心间进行参数发送、数据交换,实现系统功能。设计重点是解决核心间的通信问题。   1 ARM与DSP、FPGA通信的硬件设计   手持式频谱仪中频信号处理板主要包括4个部分:模数转换器(AD9244)、FPGA(XS3C5000)、DSP(TMS320C6412)、ARM(AT91RM9200)。ARM在手持式频谱仪中的位置和作用如图1所示。      ARM的硬件设计参考Atmel公司提供的
[模拟电子]
<font color='red'>频谱仪</font>多种内核通信机制的方案设计
频谱仪测试谐波经验分享
  最近我遇到客户测试我们模块谐波不通过的情况,结合在以前测试时候遇到的一些疑问,最近研究了一下频谱仪测试谐波的一些原理,有一些心得跟大家分享一下。案例如下,下图是同一个模块的谐波测试,却相差了13dB,之前也有小伙伴询问过这个问题,当时我也没搞懂。这次可以解答一下。 图一 谐波测试(-30dBm) 图二 谐波测试(-43dBm)   上图是同一产品的谐波测试,测试结果却不一样;可以看到两次测试的不同在于Ref Level设置不一样,但是这不是主要的因素,真正的原因是在调整Ref Level过程中attenuation(衰减)也会跟着变化,这个衰减的意义在于保证输入信号不会过大。正是这个值的变化导致了我们测试结果的不一致。
[测试测量]
<font color='red'>频谱仪</font>测试谐波经验分享
吉时利发布最新2820A型射频适量信号分析仪
吉时利仪器公司,日前宣布将其广受欢迎的射频适量信号分析仪产品线升级到了新的水平,降低了信号捕获和测量的时间。构建于吉时利2800系列信号分析仪产品线,新的2820A型射频矢量信号分析仪能在400MHz~4GHz或400MHz~6GHz的频率范围内提供40MHz的信号采集带宽。在如今的高吞吐量、复杂调制和宽带宽的无线通信标准中,该设备扩展了在这些环境中无线设备的测试。 三个优势让2820A提供充分更高的测试速度。 • 快速频率开关:2820A型仪器可以在250μs内调谐到一个新的频率,比市场上其他信号分析仪都要快。当测试一个在广泛的频率范围内或是多频率工作的设备时,这有效的降低了发射机的整体测试时间。 •
[测试测量]
基于DSPIC30F6014A单片机的音频信号分析仪的设计
目前,大多数音频信号处理仪不但体积大而且价格贵,在一些特殊方面难以普及使用,而嵌入式系统分析仪具有小巧可靠的特点,所以开发基于特殊功能单片机的音频分析仪器是语音识别的基础,具有很好的现实意义。信号分析原理是将信号从时间域转换成频率域,使原始信号中不明显特性变得明显,便于分析处理。对于音频信号来说,其主要特征参数为幅度谱、功率谱。该音频信号分析仪的工作过程为:对音频信号限幅放大、模数转换、快速傅里叶变换(FFT,时域到频域的转换)、特征值提取;从到音频信号的幅度谱,进而得到音频信号的功率谱。 1 硬件设计 “智能家居”(SmartHome)也称智能住宅。家居网络智能控制系统就是利用先进的计算机技术、通讯技术和嵌入式技
[测试测量]
基于DSPIC30F6014A单片机的音频<font color='red'>信号分析仪</font>的设计
用Microchip16位单片机设计的音频信号分析仪
  目前,大多数 音频 信号处理仪不但体积大而且价格贵,在一些特殊方面难以普及使用,而嵌入式系统分析仪具有小巧可靠的特点,所以开发基于特殊功能单片机的音频分析仪器是语音识别的基础,具有很好的现实意义。信号分析原理是将信号从时间域转换成频率域,使原始信号中不明显特性变得明显,便于分析处理。对于音频信号来说,其主要特征参数为幅度谱、功率谱。该音频信号分析仪的工作过程为:对音频信号限幅放大、模数转换、快速傅里叶变换(FFT,时域到频域的转换)、特征值提取;从到音频信号的幅度谱,进而得到音频信号的功率谱。   1 硬件设计   “智能家居”(SmartHome)也称智能住宅。家居网络智能控制系统就是利用先进的计算机技术、通讯技术和
[单片机]
用Microchip16位单片机设计的音频<font color='red'>信号分析仪</font>
微波频谱仪的工作原理及常见故障的检修
1 引 言 频谱分析仪是微波测量中必不可少的测量仪器之一,它能对信号的谐波分量、寄生、交调、噪声边带等进行很直观的测量和分析,因此,广泛应用于微波通信网络、雷达、电子对抗、空间技术、卫星地面站、EMC测试等领域。 2 微波频谱仪的基本工作原理和各主要组件的功能 2.1 微波频谱仪的基本工作原理 为了能动态地观察被测信号的频谱,现代频谱仪大多采用扫频超外差式接收方案,利用扫频第一本振的方法,被测信号经混频后得到固定的中频信号,经不同带宽滤波器后,就能观察到频差较小的两个信号。在宽带外差式频谱仪设计中,为消除镜像和多重响应等干扰,常采用两种方案:第一种是采用预选器;第二种是采用上变频。由于预选器频率受下限限
[测试测量]
微波<font color='red'>频谱仪</font>的工作原理及常见故障的检修
复杂RF环境中的射频干扰
从商业无线网络和设备到军事通信、雷达和电子战争(EW)系统,射频干扰无处不在。由于干扰不可预测,要解决这一问题十分棘手。常用的信号分析仪采用间断故障模式,使数据采集尤其困难。因此,如果不清楚一个问题的根本原因,工程师便很难找到一种测量方法来捕获这一故障。 尽管困难重重,在拥挤的频谱中找出、识别并分析干扰信号,不管其目的何在,已在各种应用中变得日益重要。一种称为无间断捕获的RF录存技术,对解决这一问题可能会特别有用。利用这种技术,系统工程师可以在一段较长的时间内连续测量数据,确保捕获所有RF事件。 了解测量中的困难 在对系统干扰进行特征分析时,系统工程师通常依赖信号分析仪来完成长时间的连续录存,如图1所示。长时间录存的主要局限
[测试测量]
复杂RF环境中的射频干扰
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved