基于ADSP-BF533的数字通信信号发生器设计与实现

发布者:EtherealLove最新更新时间:2012-01-20 关键字:ADSP-BF533  数字通信信号发生器  视频编码  解码器 手机看文章 扫描二维码
随时随地手机看文章

  0 引言

  在通信对抗的研究中,要想模拟出真实数字通信信号场景,数字通信信号发生器是不可或缺的仪器。而市面上的通信信号发生器价格十分昂贵,功能也比较简单。而且这类通信信号发生器的输出码元不可控,信噪比及干信比也不能动态调节,因此无法模拟多种调制类型通信信号的混合环境,用作通信对抗系统的性能测试信号源极为不便。所以开展高精度通信信号及噪声干扰波形的重构方法研究工作,具有重要的理论意义和实用价值。

  1 ADSP-BF533芯片简介

  ADSP-BF533是Blackfin系列的中高性能产品,专门针对多媒体(特别是视频处理)和通信方面的各种应用。其内部包含2个乘/累加器(MAC),2个40位的ALU,4个视频ALU和1个40位移位器。BF533内核工作时钟可高达600MHz。运算单元处理来自寄存器组的8位、16位或者32位数据。

  BF533的每个MAC每周期可完成一个16位乘16位的乘法运算,并可把结果累加到40位的累加器中,同时可提供8位的精度扩展。其ALU单元执行标准的算术和逻辑运算,两个ALU可处理16或32位的数据,运算单元具有很大的灵活性.因此可以满足各种应用中信号处理的要求。

  ADSP-BF533把存储器视为一个统一的4GBytes的地址空间。所有的资源,包括内部存储器、外部存储器和I/O控制寄存器,都占据公共地址空间中相应的部分,并且相互独立。此地址空间的各部分存储器按分级结构排列,以提供高性能价格比。高速、低延迟、小容量的存储器(如CACHE或SRAM)的位置非常接近处理器,而低速、高延迟、大容量、低成本的存储器(如SDRAM或Flash)远离处理器。

  BF533内的L1存储器是内核中性能最高最重要的存储器;L2存储器用以提供额外的存储能力,性能较低:片外存储系统通过外部总线接口单元(EBIU)进行访问;异步存储器单元可以连接4个异步存储器bank或IO接口,每个bank可支持最大1MBytes物理寻址空问;同步存储器单元可以由SDRAM进行扩展,可以访问多达128MBytes的物理存储空间;存储器的DMA控制器提供高带宽的数据传输能力,能够在内部L1/L2存储器和外部存储器空间之间完成代码或数据的块传输。

  另外,ADSP-BF533还提供一个可直接与并行A/D和D/A转换器、符合ITU-656标准的视频编码和解码器以及其它通用外设连接的并行接口(PPI)。PPI包括一个专用时钟引脚、多达3个帧同步引脚和多达16个数据引脚。PPI的通用模式分为4种主要的工作方式,即:内部产生帧同步中信号的数据接收,外部产生帧同步信号的数据接收,内部产生帧同步信号的数据发送,外部产生帧同步信号的数据发送。每种每个PPI_CLK时钟周期可传送高达16bits的数据,广泛应用于各种数据采集和数据传输的场合。

  2 系统硬件设计

  数字通信信号发生器系统分为两大模块:微型计算机模块和波形产生模块。其中微型计算机为通用计算机或PC,波形发生模块为设计的信号发生板卡。图1所示为系统总体框图。


  通用微型计算机首先根据用户输入的参数.分别产生各种类型的数字调制信号和高斯窄带白噪声及各种类型的干扰信号,然后将数据通过USB接口传送到信号发生板卡。信号发生板卡再通过波形产生控制器循环取出通信波形存储器和干扰/噪声存储器中的数据,最后通过DAC产生连续的数字通信信号波形。图2所示为系统硬件设计框图。


  硬件设计中的DSP1为整个系统的核心,可直接和微型计算机通信,并且控制着DSP2的加载和运行。DSP1的加载方式为BMODE 01方式,从外部Flash加载;DSP2为BMODE 10方式,通过SlaveSPI接口加载。

  DSP1首先接收微型计算机通过USB接口传送的波形数据包,并将数据包中的通信波形或通信环境波形数据以MDMA方式传送到通信/通信信号环境波形数据存储器(SDRAM1)。同时将噪声数据以SPI MDA方式传送到DSP2的内部RAM中,然后在DSP2接收后,将噪声/干扰数据以MDMA方式分别存储到噪声/干扰数据存储段(SDRAM2)内。DSP1通过SPI非DMA方式传送信噪比/干信比参数到DSP2的内部RAM中。其中通信数据的高位(D15)为基带码流数据,D14为同步信号,用于测试基带码流。

  系统中,所有波形参数的采样频率为10MHz,数据容量为16 M×16位,可存储1.5秒钟的波形数据。数据有效位数为14位。DSP1通过PPIDMA方式直接从SDRAM1中循环读取通信波形数据传送给DAC1,产生通信波形。DSP2利用程序产生随机地址,得到MDAM0的起始地址,然后将存储的噪声波形数据从SDRAM2中读入DSP2内部RAM中,并且根据信噪比在内部RAM中进行幅度加权,然后通过PPI DMA传送给DAC2,产生噪声波形。若包含干扰信号,DSP2需要通过MD-MAl将干扰数据读入内部RAM,并根据干信比在内部RAM中进行幅度加权,然后和噪声叠加,再通过PPI DMA输出到DAC2来产生干扰与噪声的混合波形。其中PPI时钟PPI_CLK信号均由各DSP的定时器产生。[page]

  两个DAC的位数是14位,并且设置为4倍插值方式,即DAC输入数据率为10MSPS,输出转换速率为40MSPS。DAC转换需要的时钟与PPI_CLK共用,DAC连接在BF533PPI总线的低14位PPI13~PPI0。基带码流通过DSPl的PPI15引脚输出,同步信号通过DSP1的PPI14引脚输出,经过74AC11244驱动输出波形。

  DAC输出的模拟信号后经过AD8054缓冲放大,再经信号和噪声合成后分为两路,可作为测试波形和信号源。

  若需要模拟通信信号环境,需要在微型计算机中计算多种信号的叠加数据,然后传送到通信/通信信号环境数据存储器(SDRAM1)中,其它过程均与通信方式相同。此模式下不能测试基带码流,但仍可测试同步信号。

  3 系统软件设计

  系统中的微型计算机采用Windows 2000/XP操作系统,其USB驱动程序由DDK开发,控制应用程序可通过VS2005进行开发。计算机可根据用户的输入参数产生2ASK、2FSK、8FSK、2PSK、2DPSK、QPSK、QDPSK等通信信号或者它们几种混合的通信环境信号,窄带高斯白噪声和噪声干扰、局部频带干扰、梳状干扰、相关干扰信号.并可将数据打包后通过USB接口发送到信号发生板卡。随后由计算机通过发送控制命令字的方式来处理数据,主要是开始输出波形、停止输出波形,更新波形数据,更新通信信号环境波形数据,更新干扰/噪声数据,更新信噪比或干信比。

  系统的软件设计主要是针对BF533进行编程。Blackfin系列DSP在软件方面支持C语言和汇编语言,同时支持二者的混合编程。C语言程序结构好、可读性强、易移植,但对于中断的处理速度慢。汇编语言处理速度快但可读性差,不易调试。C和汇编混合编程结合了各自的优势,能构造出结构好且执行速度快的程序。本系统的软件程序流程图如图3所示。另外,在编程过程中主要注意以下事项:


(1)无论用C还是汇编,系统中只有一组相同的寄存器可供使用,因此要使用这些寄存器,子函数必须先保存,返回之前恢复。

(2)要严格按照寄存器的类型来使用,不同类型的寄存器不可混用。

(3)尽量节省寄存器资源。

(4)为了提高代码运行的速度,要善于使用并行指令。


  在本系统中,中断与DMA方式运用较多,主要用到了PF中断、MDMA中断、SPI DMA中断和PPI DMA中断,系统中断控制器可控制所有的系统中断,并且管理他们的优先级。DMA不需要内核参入,在DMA运行中内核可以用于计算也可以响应中断。

  系统上电后,DSP1先从Flash中读取自身的加载代码,然后再从Flash中读取DSP2的加载代码通过SPI接口传送到DSP2加载DSP2,最后再初始化系统时钟、SDRAM、NET2272USB控制芯片,进入等待微机用户指令状态。

  4 结束语

  该数字通信信号发生器只需要在通用微机或者PC机上安装软件即可实现,其成本低,效率高,实时性好,特别是在通信对抗信号源模拟方面,更是显示了无可比拟的优越性。

关键字:ADSP-BF533  数字通信信号发生器  视频编码  解码器 引用地址:基于ADSP-BF533的数字通信信号发生器设计与实现

上一篇:汽车示波器的使用方法
下一篇:混合信号测试的开关系统优化

推荐阅读最新更新时间:2024-03-30 22:23

Socionext全新8K视频编码器 带来超高清视频新体验
SoC 设计与应用技术领导厂商Socionext Inc.(以下“公司”)宣布推出全新8K视频编码器“e8”,产品适用于8K视频直播系统,满足日益增长的超高清视频应用市场的需求。该产品预计于2019年9月正式向全球销售。 e8视频编码器内置有Socionext开发的广播级高性能多通道视频编码芯片MB86M31,支持8K/60p HEVC/H.265视频编码,并在IP网络环境下实现超高清视频直播。Socionext e8视频编码器还支持最高4:2:210bit视频素材拍摄,10bit视频可以记录丰富的色彩细节,为场外观众带来高度还原、富有临场感的视频直播享受。 图1:e8视频编码器 e8视频编码器拥有丰富的兼容性
[家用电子]
Socionext全新8K<font color='red'>视频</font><font color='red'>编码</font>器 带来超高清<font color='red'>视频</font>新体验
将基于AT89C2051的解码器应用于安防系统
1 引 言      目前,我国应用极广的编解码器是Princeton公司生产的具有531441(3 12 )种状态的PT2262编码芯片和与之配套的PT2272解码芯片。但一片PT2272只能对一种地址的PT2262的15种状态进行解码,对于较大的编解码保安防盗控制系统,常使用多片PT2272组合解码,但仍远远满足不了大中型安防系统的设计要求。因此,采用AT89C2051单片机,实现了PT2262的大容量解码功能。 2 PT2262的编码原理      PT2262(可参阅http://www.princeton.com.tw)的工作原理如图1所示,图中K0~K7为地址端,应该预置其状态;K8~K11为数据端,按下按钮开
[应用]
超低功耗编码解码器
音频功能便携设备(如便携式媒体播放器,多媒体手机)要求音频回放时间要长,即要求电池寿命要长。要使便携设备电池寿命长,一方面提高电池质量,更重要的是便携设备所用元器件功耗要低。便携装置的电池寿命是系统功率和音频编码解码器(CODEC)功率的函数,可表示为: 其中K为与电池容量、电池电压和电源变换器效率有关的因数,A为系统功耗,B为音频CODEC功耗。为了保持在小和薄形状因数前题下提高电池寿命,要求功率和音频信号通路中的所有元器件必须降低功耗。 为此欧胜微电子(Wolfson Microelectronics)推出新一代超低功耗音频CODEC WM8905,使音频功能便携装置电池寿命大大降低,使音频回放时
[家用电子]
超低功耗<font color='red'>编码</font><font color='red'>解码器</font>
一种低成本的无线IRIG-H(DC)解码器
简介:基于ATmega8单片机设计出一种简单、可靠、低成本的H码(DC)解码器。通过标准RS485接口接收差分H码信号,信号经隔离后通过单片机解码程序处理,转换成标准时间码(时分形式)通过无线方式发送给其他设备。此设计增强了解码器的使用方便性以及时间数据及通信协议设计的灵活性,在实际应用中取得了满意的效果。 引言 在工业控制、电力和其他商业系统中,IRIG-H码的校时设备在系统时钟精度要求不高的场合非常适用,可利用其解码设备占用资源少、效率高的优势为其他设备提供统一校时。本文通过ATmega8单片机,根据IRIG-H码编制程序进行解码处理,转换出常用的标准时间格式。由于IRIG-H码每分钟一帧,低速和低数据量很适合无线通信
[单片机]
一种低成本的无线IRIG-H(DC)<font color='red'>解码器</font>
MPEG音频编解码器:从mp3到xHE-AAC
音频编解码器是现代媒体系统的基础核心之一。没有音频编解码器,就不会有现在的数字广播、流媒体服务及音乐发行。首个同时也仍是最主流的MPEG音频编解码器是于1998年面市的mp3。此后,Fraunhofer IIS和其他ISO-MPEG成员参与者开发并制定了多个音频编解码器。 每个MPEG音频编解码器已经或将会改变我们消费媒体的方式。本文介绍了MPEG音频编解码器及其应用,并展现现代音频编码方案最成功的创建者Fraunhofer IIS。 MPEG L3: mp3 mp3彻底改变了音乐产业,也改变了消费者购买和享受音乐的方式。mp3目前仍然是音乐发行的主要格式,因为mp3文件可以在任何设备上随时随地播放。mp3技术于上世纪80
[嵌入式]
H.265编码:引爆网络视频监控高清时代
  说起H.265可能很多人并不太了解其究竟为何物?但对于高清视频的全面普及所有人都趋之若鹜。 在这个电视拼4K极清,网络视频拼超清,视频监控拼高清的“视频血拼”年代,人们都希望在不用大费周章增加带宽的前提下获得更高清更唯美的视频画质体验。对于这样的期待,未来H.265很可能帮大家实现。H.265作为一种最新的视频压缩技术能在有限的带宽下传输更高质量的网络视频,仅需H.264的一半带宽,即可播放相同图质的视频。这也意味着我们的移动设备(手机、平板电脑)将能够直接在线播放全高清(1080P)视频。     而H.265标准也同时支持4K(4096×2160)和8K(8192×4320)超高清视频,可以说,H.265标准让网络视频
[安防电子]
H.264视频编码基本知识
一、 视频编码技术的发展历程    视频编码技术基本是由ISO/IEC制定的MPEG-x和ITU-T制定的H.26x两大系列视频编码国际标准的推出。从H.261视频编码建议,到H.262/3、MPEG-1/2/4等都有一个共同的不断追求的目标,即在尽可能低的码率(或存储容量)下获得尽可能好的图像质量。而且,随着市场对图像传输需求的增加,如何适应不同信道传输特性的问题也日益显现出来。于是IEO/IEC和ITU-T两大国际标准化组织联手制定了视频新标准H.264来解决这些问题。 H.261是最早出现的视频编码建议,目的是规范ISDN网上的会议电视和可视电话应用中的视频编码技术。它采用的算法结合了可减少时间冗余的帧间预测和可减少空间
[模拟电子]
P-Product加盟Tensilica合作伙伴网络, 移植编解码器至HiFi 2音频引擎
美国加州SANTA CLARA 2007年9月26日讯 –Tensilica公司日前宣布P-Product公司加入其Xtensions合作伙伴网络。P-Product公司在Tensilica公司HiFi 2 音频引擎上已经移植了音频软件,并在音视频软件移植方面拥有相当重要的专业技术。 Tensilica移动多媒体总监Larry Przywara表示,“有兴趣进行自定义专门的音频编解码器移植的客户可选择P-Product公司,因为他们拥有Tensilica公司HiFi2音频引擎平台编程的技能。凭借其移植和算法优化方面的丰富经验,P-Product公司将是我们HiFi2客户的优先选择。” P-Product公司CEO Michael
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved