采用LabVIEW和NI无线传感器网络监测名胜古迹

发布者:CaptivatingEyes最新更新时间:2012-02-25 来源: 与非网 关键字:网络  传感器  名胜古迹  LabVIEW  无线 手机看文章 扫描二维码
随时随地手机看文章

  The Challenge:

  通过监测环境因素来保护历史遗迹又而不影响遗迹原貌的。

  The SoluTIon:

  使用LabVIEW, NI无线传感器网络(WSN)以及NI WLS-9163接口为Santa María de Mave教堂开发监测系统

  "通过使用LabVIEW 和 NI WSN技术,团队很容易地为一座12世纪的古迹开发了监测系统。LabVIEW和NI WSN技术所体现出来的优势在于可以在不同地点将多种传感器方便灵活的组成网络。"

  西班牙,阿吉拉尔场(Aguilar de Campo)的Santa María la Real基金,为Santa María de Mave教堂及其修道院开展了一项修复工程,这座教堂可以追溯到12世纪。项目由Castile 和 León地方政府通过Románico Norte计划提供资金,来支持Santa María la Real基金和遗产监测系统计划(MHS)。本地行动小组País Románico也通过环境农业渔业部的开发计划为Santa María la Real基金和遗产监测系统计划筹措资金。

  在这座具有历史意义的教堂改造完成后,基金会意识到遗迹需要连续监测从而保护教堂不受环境衰退的侵害。因此,小组开发了一套实验性的方案用于监测教堂的环境参数,包括如下几方面:

  * 教堂中殿内部17个位置的空气温度以及相对湿度
  * 教堂外部的空气温度和相对湿度
  * 一套位于教堂上部的微型气象站的数据采集系统
  * 结构振动的测量

  教堂的保护团队决定将这些测量数据存储于一台位于教堂内部的中央计算机,数据将被传送到远程站点用以观察和管理。另外,还需要安装一个红外入口探测器、一个火警探测器以及一个用于遥控外部设备的装置。

  团队选择 LabVIEW来管理整个系统以及同时执行多个进程。他们同时选择了NI WSN技术用于测量温度和湿度参,以及入口探测器,火警探测器和制动器。此外团队使用NI WLS-9163 Wi-Fi模块结合三轴加速计来测量结构振动。

  团队最大的挑战来自于线路的安装与传感器的隐藏,要在不妨碍遗迹外观的同时保持良好的无线电信号,由于遗迹石墙和柱子的存在,这是很困难的。图1描述了教堂中殿的传感器网络的大概位置。

Figure 1: 节点贡献计划[page]


  团队在与中殿相连的小房间内安装了两个NI WSN-9791网关,基于美观的考虑,将他们从人群的视野当中巧妙的隐藏了。然而,隐蔽的节点与中央计算机之间无线信号质量就变差了。为解决这一问题,团队放置了高增益的外部天线(9 dB)并为两个网关使用了1.5米的延长线,将天线的放置靠近木门的内框上,如图2所示。

  团队使用了低功耗和易于连接的NI WSN-3202 模拟输入节点,以及型号为为HMP50的温度与湿度计。这一装置每10秒钟读取一次温度和湿度度值,计算每分钟内的平均值,并将其传给网关。只有在检测到变化的时候,数字输入(通道0和1)才会发送数据。只有当网关发送指令时数字输出才会被激活,然后连接到特定位置的固态继电器上。

  起初,遗迹保护团队安装WSN-3202节点时没有使用保护性外壳,如图3所示。后来,团队安装节点时使用了可以着色容易隐藏的防水外壳。这样可以选择无线信号更好的位置。

  团队使用LabVIEW管理测量系统,开发了一套基于多线程的应用程序,可以同时执行若干进程。这些进程包括如下任务:

Figure 2: 测量节点

  后来,小组把节点装置放在防水的地方,那里更易于上色和隐藏。这使得这个位置成为信号接收的较佳位置。[page]

  团队使用LabVIEW管理测量系统,开发了一套基于多线程的应用程序,可以同时执行若干进程。这些进程包括如下任务:

  * 测量来自传感器网络和气象站的数据
  * 读取来自加速计的数据
  * 使用互联网将数据传送给远方的数据库
  * 管理用户界面

  进程被均衡的分配在惠普(HP) Proliant ML115 G5服务器(一个四核Opteron CPU)的不同核上。应用程序调用Service Keeper and Service Mill的工具来作为Windows操作系统的服务运行。部分接口如图4和5所示。

Figure 3: 用户界面截图

  保护团队安装了一个气象站,由串行线缆(RS232, RS485, RS422 及 SDI-12)连接到一个叫做Digiconnect Wi-SP的Wi-Fi装置,它与一个Wi-Fi接入点相连。服务器上的DIGI Realport软件仿真一个串口,LabVIEW应用程序由这个串口读取气象站的数据。

  团队使用同样的策略连接WLS-9163装置读取三个加速度计通道的数据。他们将WLS-9163 Wi-Fi客户端连接到Wi-Fi接入点,LabVIEW由模拟输入通道读取数据。

  尽管传输无线信号的条件极其恶劣,WSN网络依然稳定运行。所有的节点可以达到超过20% 的信号强度,节点偶尔会失去连接,对于这些节点而言只要有8%的信号强度他们就能够传输数据。这种情况可以通过中继节点来解决,但这种解决方案并不可行,因为中继节点并不能从外部获取供电,会很快耗尽电池。

  通过使用LabVIEW 和 NI WSN技术,团队很轻松地为一座12世纪的古迹开发了监测系统。所体现出来的优势在于可以在不同地点将多种传感器方便灵活的组成网络。

  通过在LabVIEW中开发节点程序允许在节点中完成复杂的数据处理,确保了节点电池的使用时间和更高的能源利用率。例如,保护团队可以应用一种策略,对采集到的数据求平均或进行其他复杂计算,当数据出现变化时,才会传送数据。同样的,节点间的数据传输功能也允许团队实现远程配置节点程序。教堂保护团队实现了他们的目标,维护了一座重要历史宝库的特色和完整性。

关键字:网络  传感器  名胜古迹  LabVIEW  无线 引用地址:采用LabVIEW和NI无线传感器网络监测名胜古迹

上一篇:基于LabVIEW8.6和S3C2440的手持数字波形表的界面设计
下一篇:NILabVIEW中的定时与同步

推荐阅读最新更新时间:2024-03-30 22:24

基于 MEMS 的“硅芯片声纳”超声波ToF传感器扩大了感应范围
TDK公司宣布现在可以选择扩大了感应范围的基于 Chirp CH-201 MEMS的超声波飞行时间(ToF)传感器的原始设备制造商(OEM)。此款ToF传感器利用微型超声换能器芯片发射超声波脉冲,然后收听从位于传感器视场中的目标返回的回波。通过基于超声波飞行时间(ToF)计算的距离,传感器可以确定某一物体相对于器件的位置,同时触发程序设计行为。 日本TDK的MEMS超声波技术利用3.5mm×3.5mm封装的自研ToF传感器,并在定制的低功耗混合信号CMOSASIC上结合了MEMS超声换能器和节能数字信号处理器(DSP)。此款传感器可以具有多种超声波信号处理功能,从而为客户提供了适合于广泛用例场景的工业设 计方案,其中包括测距、
[汽车电子]
基于 MEMS 的“硅芯片声纳”超声波ToF<font color='red'>传感器</font>扩大了感应范围
清华大学本科生研发“自由角度无线充电”装置,有望建成无线充电公路
行驶不到300公里就得充电,一次充电至少得6个小时,小区还需安装专门的固定充电桩……这些限制因素都让消费者对电动车难以动心。 如果在不久的将来,当您驾驶着电动汽车在公路上飞驰,无论是直道还是弯道,无论是隧道还是桥梁,电动车一边行驶就能一边快速给电池补充电能。之前的顾虑还会存在吗?这不是天方夜谭,来自清华大学汽车工程系的本科生戴亚奇和同学们研发出的“自由”技术就能实现上述情景。这项技术获得了清华大学第32届“挑战杯”科技竞赛特等奖。 研究未来汽车发现瓶颈 2011年,戴亚奇进入清华大学汽车工程系就读。2013年10月,他找到了一群志同道合的人,加入了“未来汽车”兴趣团队。 这是一个神奇的团队,团队里的成员
[汽车电子]
清华大学本科生研发“自由角度<font color='red'>无线</font>充电”装置,有望建成<font color='red'>无线</font>充电公路
温度传感器的基础知识
一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温
[测试测量]
瑞萨将开发近距离通信无线技术,用于汽车等传感网络
    比利时imec与日本瑞萨电子将在荷兰霍尔斯特中心(Holst Centre)联合开发超低功耗(ultra-low power:ULP)的近距离通信用无线技术。这项无线技术主要用于智慧城市中的汽车及工业用途传感器网络。   此次与imec合作后,瑞萨将参与开发在用小型电池驱动及环境发电的便携设备上对应多种通信标准的无线通信技术。通过将自主开发的架构、ULP设计IP以及低功耗电路结合在一起,imec的ULP无线通信技术可以获得仅为现有无线通信技术1/3~1/10的低功耗。另外,该无线通信技术符合 Bluetooth Low Energy(2.4 GHz频带)及ZigBee(2.4 GHz频带)等无线通信标准。   发布资
[汽车电子]
VHF/UHF无线发射芯片RF2516的原理与应用
RF2516是RF Micro Device公司推出的一种单片AM/ASK VHF/UHF发射芯片,可工作于100MHz~500MHz,并采用AM/ASK调制方式。其片内集成了PLL、VCO和参考振荡器。工作电压为2.25V~3.6V,可为50Ω负载提供%26;#177;10dBm的输出功率。 RF2516可应用在315 MHz~433 MHz 的远程无钥匙接入系统、无线安全系统及其它远程控制设备中。由于其片内集成了VCO、鉴相器、预定标器和参考振荡器,因此,只要外接一个晶体谐振器就可构成完整的锁相环。RF2516除了具有标准的掉电模式外,还具有自动锁相检测功能。当PLL失锁时,发射输出无效. 1 引脚功能 RF2516采用1
[网络通信]
Vishay OSOP系列SMD薄膜网络电阻的新款型号具有更高精度
日前,Vishay Intertechnology, Inc.宣布,推出新的符合JEDEC MO-137 variation AB和AE的16pin和24pin版本,扩充其采用25mil引脚间距QSOP封装的OSOP系列表面贴装双路直排式薄膜网络电阻。下面就随嵌入式小编一起来了解一下相关内容吧。 Vishay Dale薄膜网络电阻提供隔离式,共用末位pin脚和定制的电路,电阻相对公差为±0.025%,相对TCR低至±5ppm/℃,可实现比竞争器件更高的精度。 今天发布的网络电阻适用于精密分压器和运算放大器,最大带底座高度为1.73mm,引脚间距为25mil,比目前标准间距器件所需的电路板空间少50%。典型应用包括电信、工业、过
[嵌入式]
利用射频芯片nRF9E5设计无线温湿度测量电路
nRF9E5是一款工作频率为433/868/915MHz的智能射频芯片,集成了8051微控器、4通道10位A/D转换以及多通道RF收发。   本文介绍采用该射频芯片、温度传感器LM71、湿度传感器HS1101实现温度和湿度无线测量的电路设计方法和编程实现,该设计具有简单可靠和灵活方便的特点。   nRF9E5 是一款工作频率为433/868/915MHz的智能射频芯片,该芯片采用1.9V~3.6V单电源供电,32脚QFN封装(5×5mm),发射功率为 10dBm,接收灵敏度-100dBm,在低功耗时电流仅2.5μA,特别适合采用电池供电,适用于无线键盘、无线电话、无线耳机、工业无线传感器、遥控器和无线报警器等。   无
[测试测量]
利用射频芯片nRF9E5设计<font color='red'>无线</font>温湿度测量电路
离电子传感纸赋予压力传感器全新“触觉”
据麦姆斯咨询报道,纸张作为一种易获取、成本低、绝缘、柔软以及便携的材料,长期以来作为化学和生物传感的灵活平台。例如pH试纸、血糖试纸、早孕检测试纸等都是应用十分广泛的生物化学 传感器 。 随着这一领域的持续发展,基于纳米技术的纸基传感器有望成为简易、便携、一次性、低功耗且低成本的传感器件,可在医学、爆炸物和有毒物质检测和环境研究等领域得到普遍应用。由于纸质的纤维结构,可以用功能添加剂对它们进行改性,如碳衍生材料(如碳纳米管和石墨烯)、导电聚合物和金属纳米复合材料等,从而产生新的功能和传感模式。 以往报道的压敏纸以及由它们制成的压力传感器主要基于三种现有的传感机制,即电阻式、电容式和摩擦电式。 “最近,我们引入了一种全新的压力传感机
[医疗电子]
离电子传感纸赋予压力<font color='red'>传感器</font>全新“触觉”
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved