如何测量电容式触摸屏的实际信噪比

发布者:乘风翻浪最新更新时间:2012-03-12 来源: eefocu关键字:电容式  触摸屏  信噪比 手机看文章 扫描二维码
随时随地手机看文章

触摸屏控制器制造商经常拿各种规格和标准来使自己的产品与众不同。其中最常提到的就是信噪比(SNR)。然而,当噪声存在时,即使数字上看起来不错,也并不意味着SNR就是一个很好的系统性能指标。这篇文章将讨论什么是信噪比,它是如何计算的,它对系统性能意味着什么,是否能很好的度量触摸性能。

什么是信噪比?

信噪比是触摸屏控制器的性能指标,现在已经作为行业标准被大家接受。信噪比的问题是没有任何行业标准的测量、计算、报告方法,尤其是在某些典型系统中,噪声具有高可变性的情况下,例如移动电话。这两个部分(信号和噪声)的测量和计算很大程度上依赖于被测装置(DUT),有代表性的是移动电话。值得注意的是,虽然信噪比作为性能衡量已被广泛接受,行业专家明白,大多数市场宣扬的高信噪比放到实际应用中并不能保证。此外,在噪声环境下,提供高信噪比也不能完全符合其功能规范。

在电容式触摸屏中,信噪比中信号就是加上测量到的手指电容后的实际电容的变化量。手指电容取决于传感器覆盖物厚度、手指大小,DUT到地的寄生电容,以及传感器模式。噪声成分依赖于内部控制器噪声和外部噪声源,本文将会就这些方面进行讨论。

投射式电容触摸屏触摸技术已应用在很多新型智能手机中,触摸传感器使用时都会遇到噪声。噪声从显示器(可能是LCD或AMOLED)耦合到触摸传感器,距离越近噪声越大。不像模拟显示那样同步,这类LCD噪声通常是尖峰噪声。USB充电器噪声通常也是也尖峰噪声。它也是最容易变化的,因为在每个设备中AC/DC变压器的结构和组件是不同的。

第三方低成本的充电器特别容易出现这种噪声尖峰。因此,当触摸控制器没有像cypressChargerArmor那样的噪声抑制技术时,USB充电器是OEM厂商最头疼的事情。当所有这些外部噪声存在时,我们期望触摸控制器不会错误报告手指触摸或手指位置。他们并不能归类于普通,或高斯,或分布式噪声。这就给工程师和营销人员带来一个问题,要区分出没有噪声时ADC的信噪比。

在众多的测量条件下,信噪比一直能够作为度量标准不能不说是一个奇迹。此外,信噪比不能预测最重要和量化的触摸屏噪声相关参数:抖动(也称为无噪声分辨率)和错误触摸报告。幸运的是,有一个信噪比测量技术能预测非高斯噪声存在时的抖动。

噪声如何影响触摸屏系统

不好的信噪比会影响系统的鲁棒性,造成假触摸和位置跳动。手指靠近触摸屏时会干扰相交的两个透明电极的边缘电场。这种电容称为互电容。这就改变了传感器的电容。交叉点发生在发射和接收电极直角交叉处。在手机触摸屏上有好几百个这样的交叉点。触摸屏控制器测量所有交叉点电容的变化,并把测量数据转换成量化的原始数据。通过测量每个交叉点,而不是整个电极,控制器就能够创建一个二维的触摸屏传感器电容图表。

如果在手指附近交叉点发生一个大的噪声尖峰,那么在位置计算算法就会添加一个错误标志。然后该算法转换原始数据到坐标;根据噪声峰值大小,手指位置报告的坐标可能是抖动,当手指静止,可能在两坐标间交替。当智能手机使用触摸屏接口,插到USB充电器时,某些无意识的输入或选择可能会出现这些情况。

我们可以断定,在缺少规范化测量方法时,信噪比可以作为性能度量,但并不完美。这里有定义好了的性能指标,测量步骤,计算方法,触摸屏控制器供应商(见赛普拉斯规范001-49389)和移动设备OEM可以使用来量化触摸性能。这些规范是必要的,可以保证可重复的试验结果,验证触摸屏性能,减少触摸屏测试硬件和固件变化。

典型的性能测试除了触摸屏硬件和控制器接口外还需要金属手指模拟器,夹具,示波器,函数发生器,自动机械。例如,标准的抖动测量过程分为七步,记录手指位置坐标上的时间噪声。这里的测量表明有多大运动,多少距离,我们会期望是不动的手指。这是一个相对简单的参数测量,它直接并立即在用户界面产生影响。相比之下,信噪比的影响在触摸屏性能上就不那么直接了。即使在噪声环境下,数字滤波器和位置计算算法也能够去除抖动,就是降低了信噪比值(作为一种性能度量)。把信噪比作为一个性能指标是不可取的,因为它不能最终给你一个真正意义上的系统性能。

本文是想告诉大家,不要以点见面,以偏概全,信噪比并不能告诉我们系统是否很好地响应触摸。这就是为什么触摸控制器领先制造商,如赛普拉斯TrueTouch,有一套测试和测量方法来评估新的触摸屏设计的性能。

关键字:电容式  触摸屏  信噪比 引用地址:如何测量电容式触摸屏的实际信噪比

上一篇:基于VB的PC-单片机通信波特率自动检测方法
下一篇:数据中心的整体测试方案

推荐阅读最新更新时间:2024-03-30 22:24

Android移动应用触摸屏的实现和优化方案
近些年来,随着3G 网络的大规模建设和智能手机的迅速普及,移动互联网时代已经到来。作为Google 推出的一款操作系统,Android 自问世以来就吸引了人们广泛的关注,受到众多厂商和开发者的青睐。Android 是一个开放、完整、免费的手机平台,强大的开源特性吸引了越来越多的开发者,Android的版本如今已由最初的1.1 升级到最新的4.0,功能越来越强大,用户体验越来越好,在Android 平台上发布的应用产品更加丰富多彩。 Android 平台上的应用越来越多,人们对应用的要求越来越高。现阶段触屏手机是趋势,触摸是人们与应用交互的主流方式,人们对触摸的灵敏度,简易性和方便度要求越来越高,有必要优化应用的触摸效果。
[嵌入式]
Microchip推出mTouch投射电容式触摸屏传感技术
美国微芯科技公司(Microchip Technology Inc.)在美国西雅图举行的SID显示大会(SID Display Week)上宣布,推出mTouch投射 电容式触摸屏 传感技术,这是正在申请专利的一系列投射电容式触摸屏解决方案中的首项技术,这些解决方案可利用公司8位、16位和32位PIC MCU产品线实现。Microchip同时推出了mTouch投射电容式开发工具包,以及PIC16F707 8位 单片机 (MCU)。后者具备两个16通道电容式传感模块(CSM),可以同时运行以提高采样率。目前已经上市的这款MCU以及新推出的mTouch投射电容式技术和开发工具包有助于设计人员用一个MCU即可在其应用中轻松集成投射电容
[工业控制]
基于LPC2478与ADS7843的工业触摸屏设计
  触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点,相比键盘输入,触摸屏技术更简单、直观、快捷,且具有丰富多彩的表现能力。设计触摸屏时,最重要的问题是准确定位触摸点的坐标位置,本文详细介绍了利用工业级芯片LPC2478与ADS7843设计四线电阻触摸屏的实际方案。   1 硬件设计   1.1 硬件选择   LPC2478芯片内部集成了LCD接口,它的工作范围为-40~+80℃,其宽温的特点特别适合工业领域。ADS7843芯片是一款专为触摸采样设计的芯片,12位可编程精度。外部参考电压范围从1 V~Vcc均可,Vcc最高电压为5 V,高速低功耗使得ADS7843非常适用于电阻触摸屏的手持设备。   1.2
[单片机]
MAX1233/MAX1234触摸屏控制器入门
摘要:本应用笔记介绍怎样使用MAX1233/MAX1234触摸屏控制器的功能。所提供的简化控制台菜单系统支持对MAX1233/MAX1234器件寄存器的底层直接访问。每一寄存器在32个SPI™时钟周期内完成读写操作。软件对每一寄存器使用简短的助记名。使用MAX1234评估板(EV Kit)和MINIQUSB+命令模块时,软件支持最大底层控制。在随附的zip文件中,提供所有源代码。 MAX1233的工作方式和 MAX1234一致,只是MAX1233采用3.3V供电,而不是5.0V。MAX1234评估板上的跳接器JU1使MAX1234工作在3.3V,以仿真MAX1233。 注意:符号"/" (例如,/CS)表示CS、PENIRQ、
[模拟电子]
MAX1233/MAX1234<font color='red'>触摸屏</font>控制器入门
WEINVIEW触摸屏在太阳能光伏并网逆变器中的应用
   1 引言   随着全球经济的迅猛发展,各行业能耗加剧,石油、煤炭等传统化石能源日趋枯竭。世界各国都把目光投向了可再生能源,希望可再生能源改变人类的能源结构,维持长远的可持续发展。在可再生能源中,太阳能以其独有的优势而成为人们关注的焦点。太阳能是取之不尽、用之不竭、无污染的绿色能源。世界各国都在投入巨资建设大规模的太阳能发电站。我国在光伏研究和产业方面也取得了较快的进展,2006年1月1日实施的《可再生能源法》,标志着太阳能发电已纳入我国的能源发展规划之中。根据2007年9月发布的《可再生能源中长期发展规划》,2020年,我国太阳能发电设备累计装机容量将达到2000MW 。   太阳能光伏并网逆变器是整个光伏发电系统中最为关键的
[电源管理]
WEINVIEW<font color='red'>触摸屏</font>在太阳能光伏并网逆变器中的应用
电阻式触摸屏组成结构和触摸屏原理
很多LCD模块都采用了电阻式触摸屏,这些触摸屏等效于将物理位置转换为代表X、Y坐标的电压值的传感器。通常有4线、5线、7线和8线触摸屏来实现,本文详细介绍了SAR结构、四种触摸屏的组成结构和实现原理,以及检测触摸的方法。 电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。 过去,为了将电阻式触摸屏上的触摸点坐标读入微控制器,需要使用一个专用的触摸屏控制器芯片,或者利用一个复杂的外部开关网络来连接微控制器的片上模数转换器(ADC)。夏普公司的LH75400/01/10/11
[电源管理]
电阻式<font color='red'>触摸屏</font>组成结构和<font color='red'>触摸屏</font>原理
PLC的抗干扰技术
 概述 自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是分散安装在生产现场的各单机设备上,虽然它们大多处在强电电路和强电设备所形成的恶劣电磁环境中,但PLC是专门为工业生产环境而设计的控制装置,在设计和制造过程中采用了多层次抗干扰和精选元件措施,故具有较强的适应恶劣工业环境的能力、运行稳定性和较高的可靠性,因此一般不需要采取什么特殊措施就可以直接在工业环境使用,但是由于它直接和现场的I/O设备相连,外来干扰很容易通过电源线 或I/O传输线侵入,从而引起控制系统的误动作。PLC受到的干扰可分为外部干扰和内部干扰。在实际的生产环境下,外部干扰是随机的,与系统结构无关,且干扰源是无法消除的,只能针对具体情况加以限制
[嵌入式]
新型电容式指纹传感器
    摘要: 指纹识别是当前进行身份认证的一种比较可靠的方法。美国Veridicom公司生产的电容式指纹传感器FPS110,具有体积小、成本低、功耗少和成像清晰等优点,因而具有广泛的应用。文章给出了FPS110的各引脚功能和电气特性。     关键词: 电容式 指纹 传感器 AFIS A/D转换 FPS110 1 引言 指纹由于具有唯一性(人各不同,指指相异)和稳定性(终生基本不变)而使其成为个人身份识别的一种有效手段。将某人的指纹采集下输入计算机是进行自动指纹识别(AFIS)的首要步骤。指纹图象的获取一般有两类方法:一是众所周知的使用墨水和纸的方法,这种方法费工费时且不可靠,不适合用于AFIS。另一类
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved