三基色亮度计的设计和应用

发布者:ananan一二三四五最新更新时间:2012-03-15 来源: eefocus关键字:亮度计  颜色传感器  MCU 手机看文章 扫描二维码
随时随地手机看文章

本文利用新型颜色传感器 TCS230具有的滤光选择功能,借助 MCU设计出了一种能够同时测量白光中所含的三基色(红、绿、蓝)亮度的便携式亮度计。另外该亮度计还提供计算机通信接口以及数据接收软件,实现了对数据的采集和处理,并把处理后的数据数字化的显示到 OLED屏上。该亮度计具有快速,精确,便捷的特点,可广泛应用于各种需要对光色成分进行分析、测量的行业。

1引言

随着 LED行业的快速发展,竞争的不断加剧,LED品质受到了前所未有的重视,尤其是在大屏幕显示、LED照明光源等对颜色要求较高的场合,品质控制的难度和重要性均显得特别突出。因此,对 LED性能的测试和*估逐渐被提上日程。通常 LED的标准检测仪器是光谱分析仪,它能够分析 LED发出光的颜色和亮度,但它体积庞大,价格昂贵,少则几万多则几十万,并非一个小型企业所能负担的。

现有的亮度计,都是通过电流的强弱来标定被测物的亮度大小。我国亮度计生产厂家生产的光亮度计通常无颜色选择功能,如果需要测量某种颜色的光(常指三基色红、绿、蓝)的光强,通常要在独立的光电二极管上覆盖经过修正的红、绿、蓝滤光片,然后对输出的模拟信号加一个 A/D电路进行采样,再对该采样信号进一步处理,才能进行识别,增加了电路的复杂性,并且存在较大的识别误差,影响了识别的效果。在遇到同时需要对多种颜色光强进行测量的场合,工作量将会成倍的增加,其烦琐性是显而易见的,同时,也增大了测量结果的误差。

为了克服传统亮度计无法检测被测光源所包含的单色光光强的缺点,本文设计了一种能够同时测量白光中所含的三基色(红、绿、蓝)亮度的亮度计,用来分析测量光中的颜色成分和亮度,同时把检测结果数字化的显示到 OLED屏上。这样在测量 LED大屏幕显示器的时候只要把红绿蓝三种颜色的 LED发光二极管都点亮(即白色),就可直接分析出其中的颜色成分和亮度大小,并省去了大量的记录工作。

2系统硬件结构与原理

三基色亮度计主要由五部分组成:数据采集模块、MCU控制模块、OLED显示模块、数据通信模块、键盘输入模块。系统的基本工作原理为:通过键盘选择颜色并设定参数,控制单片机来向传感器发送指令,当传感器接收到光信号后,输出频率会随之发生变化,单片机对传感器采集的数据进行适当的判断、计算和处理,然后数字化的显示到 OLED屏上。系统原理图如图 1所示。


2.1 数据采集模块

数据的采集用的是美国 TAOS公司生产的颜色传感器TCS230,它是业界首款带数字兼容接口的 RGB彩色光/频率转换器,它内部集成了可配置的硅光电二极管阵列和一个电流/频率转换器。TCS230输出为占空比50%的方波,且输出频率与光强成线性关系。该转换器输出频率范围为2—500kHz,且可通过 2个可编程引脚来选择2% 、20% 、或100%的输出比例因子。TCS230的输入、输出引脚可直接与微处理器或其他逻辑电路连接。


图2是TCS230的引脚封装和功能框图,从功能框图可知:当入射光投射到TCS230上时,通过光电二极管控制引脚S2、S3的不同组合,可以选择不同的滤波器;经过电流到频率转换器后输出的是占空比为50%的方波,不同颜色和光强的光所对应输出的方波频率也是不一样的。还可以通过输出定标控制引脚S0、S1选择不同的输出比例因子,对输出频率范围进行调整,以适应不同的需求。SO、S1及S2、S3的可用组合如图3所示。


下面简要介绍TCS230芯片各个引脚的功能及它的一些组合选项。S0、S1用于选择输出比例因子或电源关断模式;S2、S3用于选择滤波器的类型;OE是频率输出使能引脚,可以控制输出的状态,当有多个芯片引脚共用微处理器的输入引脚时,也可以作为片选信号;OUT是频率输出引脚,GND是芯片的接地引脚,VCC为芯片提供工作电压。[page]

2.2 MCU控制模块

MCU采用的是 Cygnal公司的单片机C8051F023。它是完全集成的混合信号片上系统(SOC),具有与 MCS-51内核及指令集完全兼容的微控制器。 C8051F023具有高速、非侵入方式的在系统调试接口、8通道 ADC、带 PGA和模拟多路开关、在系统编程的 FLASH 存储器、5个通用的 16位定时器、 5个可编程计数器 /定时器阵列等特性。该模块主要实现数据的采集、处理、显示、传输以及键盘指令的响应,它的核心部分是单片机对传感器的控制。C8051F023与 TCS230的连接,如图 4所示。


将 TCS230的 S0以及 S1两个引脚全部与电源相连,这样连接将会使颜色传感器输出占空比50%,频率值为100%的方波。这样给最终调试时带来了方便,在不同设计要求时只需要简单的调节接线就可以实现不同的功能。TCS230的 S2和 S3这两个引脚为光电二极管类型选择的引脚,现与 C8051F023单片机的 P0.0 、P0.1相连。单片机就是通过这两个引脚对传感器进行选择控制,而对传感信号的接收则是通过 P0.4与 TCS230的 OUT引脚来连接实现的。TCS230的反应速度快,达到 10 μs,同时通过对S2、S3的控制来改变滤波器类型,可方便的选择颜色,并且输出可以为二路数字信号,具有较强的干扰能力。

2.3 OLED显示模块 采用的是 128×64行点阵的 OLED单色、字符、图形显示模块VGS12864E。模块内藏64×64显示数据RAM,其中每位数据对应于 OLED上一个点的亮、暗状态;其接口电路和操作指令简单,具有 8位并行数据接口,可直接与 8位微处理器相连。

2.4 数据通信模块和健盘输入模块

用 MAX232来完成 TTL-RS232电平转换,实现亮度计与计算机的数据交换。通过键盘输入模块,可以非常方便的改变对颜色的选择。

3软件设计

系统软件流程如图5所示。软件采用C语言编程,主要完成对硬件的控制以及对采集数据再现等功能。单片机控制程序主要由4部分组成:数据采集、键盘响应、菜单显示、数据通信。程序的开始首先要对单片机进行初始化,这是必要的步骤。单片机初始化程序包括关闭看门狗、时钟初始化、端口初始化,交叉开关寄存器初始化,以及定时器和中断等的初始化。初始化完成后,如需要颜色识别,就进行具体颜色选择,保存设置,采集数据,完成颜色的识别。


系统设计时还应当注意一些问题。首先,在设计时,一定要考虑白平衡问题,所谓白平衡,就像是天平在使用前的调零一样,也就是用户所指定颜色的外界白光。因为要依此白光为基准进行调整。这里有两种方法可以计算并调整参数。一是依次选通三种颜色的滤波器,然后对 TCS230的输出脉冲依次进行计数。当计数到 255时停止计数,并分别计算每个通道所用的时间。这些时间就是对应于实际测试时 TCS230每种滤波器所采用的时间基准,在这段时间内所测得的脉冲数就是所对应的R、G和B的值。二是设置定时器为一固定时间(例如10 ms),然后选通三种颜色的滤波器,并计算这段时间内 TCS230的输出脉冲数。这样便可计算出一个比例因子,通过这个比例因子可以把这些脉冲数变为255。然后在实际测试时,使用同样的时间进行计数,把测得的脉冲数再乘以该比例因子,这样就可以得到所对应的R、G和 B的值。

4结束语

利用本文介绍的基于 TCS230设计出的三基色亮度计,只需一次测量即可完成对 LED显示管的红、绿、蓝及白光的颜色和亮度的测量,大大提高了测量效率,同时还具有成本低,精度高,功能全等特点。因为不需要另外添加滤光片,这在对三基色光强要求较多的显示领域,如 LED大屏幕显示器的一致化校正,液晶显示器测试等等有着广阔的应用前景。本文创新点:传统亮度计只能测量其感光器件所接收的光强,如不使用滤光设备,则无法检测被测光源所包含的单色光光强。本文设计了一种能够同时测量白光中所含的三基色(红、绿、蓝)亮度的亮度计,用来分析测量光中的颜色成分和亮度,同时把检测结果数字化的显示到 OLED屏上,具有成本低,精度高,功能全等特点。

关键字:亮度计  颜色传感器  MCU 引用地址:三基色亮度计的设计和应用

上一篇:基于Pt100运用查表法实现的高温温度计设计
下一篇:基于8098单片机的脉冲测量仪的软硬件介绍

推荐阅读最新更新时间:2024-03-30 22:24

用51单片机实现串口-以太网转换器
单片机或微控制器(MCU)(也称为嵌入式系统)已经在各个领域得到了广泛的应用。目前绝大多数系统都是以MCU为核心,与一些监测、伺服、指示设备配合实现一定的功能。以太网是当今最受欢迎的局域网之一,现已成为社会重要的基础信息设施之一, 是信息流通的重要渠道,如果嵌入式系统能够连接到Internet上面,则可以方便、低廉地将信息传送到几乎世界上的任何一个地方。 将嵌入式系统与Internet相连的主要困难在于:Internet上面的各种通信协议对于存储器、运算速度等的要求比较高,而嵌入式系统中除部分32位处理器以外,大量存在的是8位和16位MCU,支持TCP/IP等Internet协议将占用大量系统资源,从而影响本来的功能或根本
[单片机]
用51<font color='red'>单片机</font>实现串口-以太网转换器
C#与51单片机串口通信
C#与51单片机串口通信 51接受数据,PC发送数据。 通过单片机的数码管将PC发送的16进制数据显示出来。 51接受数据代码: #include reg51.h #include string.h #include intrins.h sbit LS138A = P2^2; //定义138译码器的输入A脚由P2.2控制 sbit LS138B = P2^3; //定义138译码器的输入脚B由P2.3控制 sbit LS138C = P2^4; //定义138译码器的输入脚C由P2.4控制 unsigned char ch; bit read_flag= 0 ; //此表为 LED 的
[单片机]
W801单片机学习笔记——内部结构,总线架构篇
1.前言 在于各个型号的单片机打交道的这几年越发清晰得发现学习一款单片机一定不能把它当作一个神奇的黑盒子,否则只能跑跑SDK带的例程,感动自己。经过在联盛德官网一通搜寻猛如虎下,终于找到了类似于参考手册和数据手册的文档,他们分别叫寄存器手册和产品规格书,下载连接如下: 链接:https://pan.baidu.com/s/1KG5hJetnraERyEQtrSYIdQ 提取码:SYHT CSDN资源下载连接如下: W801参考手册(寄存器手册),W801数据手册(产品规格书)-单片机文档类资源-CSDN下载 2.W801单片机里面有什么?各部分之间有何关系? 一般情况,在数据手册会有该单片机的总体功能介绍、管脚定
[单片机]
W801<font color='red'>单片机</font>学习笔记——内部结构,总线架构篇
单片机定时器/计数器的工作原理
MCS-51单片计算机内部设置的两个16位可编程的定时器/计数器T0和T1,它们均有定时和计数功能。T0和T1的工作方式功能选择、定时时间、启动方式等均可以通过编程对相应特殊功能寄存器TMOD和TCON的设置来实现的,计数器值也由软件命令设置于16位的计数寄存器中(TH0、TL0或TH1、TL1),计数器的工作是加1的计数器。选择T0和T1工作在定时方式时,计数器对内部时钟机器周期数进行计数,即每个机器周期等于12个晶体振荡周期;选择T0和T1工作在计数方式时,计数脉冲来自外部输入引脚T0 和T1,用于对外部事件进行计数。当外部输入信号由1至0的跳变时,计数器的值加1。
[单片机]
采用EM78P468单片机的计算机监视器的设计
  在计算机技术逐渐渗入社会生活各个层面的今天,使用计算机的人越来越多。在这些人群当中,有很大一部分对电脑硬件并不熟悉,或不懂得维护。在此设计一个电脑监控器,它的功能是及时反映出电脑主机内部CPU温度及风扇运转情况等,可及时有效地对电脑进行维护。   1 系统组成及功能   1.1 系统的构成   电脑监视器由EM78P468单片机、按键模块、风扇测速模块、测温模块、显示模块、报警模块等组成,其系统总体结构框图如图1所示。   1.2 系统的主要功能   设计主要实现的功能是及时检测电脑CPU的温度,当温度达到报警温度时则报警,同时检测并显示风扇转速,当风扇不工作或工作出现故障时都可及时地从转速发现问题。另外,可显示真
[单片机]
采用EM78P468<font color='red'>单片机</font>的计算机监视器的设计
STC12C2052及11/10xx系列单片机通用EEPROM测试程序
近日研究STC12C2051的EEPROM的应用,发现官方只给出其汇编语言版本的程序。只有其公司最新推出的STC11/10xx系列的单片机有EEPROM的C语言测试程序。在网上搜索未果后,便自己动手修改,并将STC12C2052系列和STC11/10xx系列单片机的EEPROM测试程序整合起来,制作了一个适用性更好的程序。经在STC12C2052单片机硬件上测试正常,特此与大家分享! /********************************************************************************************* 程序名:STC系列单片机内部EEPROM 测试程序 编写人:杜
[单片机]
51单片机教程:单片机的特殊功能寄存器
我们已知单片机的内部有ROM、有RAM、有并行I/O口,那么,除了这些东西之外,单片机内部究竟还有些什么,这些个零碎的东西怎么连在一起的,让我们来对单片机内部的寄存器作一个完整的功能分析吧! 下图中我们能看出,在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在一个51单片机的内部包含了这么多的东西。 单片机内部结构图 对上面的图进行进一步的分析,我们已知,对并行I/O口的读写只要将数据送入到对应I/O口的锁存器就能了,那么对于定时/计数器,串行I/O口等怎么用
[单片机]
51<font color='red'>单片机</font>教程:<font color='red'>单片机</font>的特殊功能寄存器
8位单片机宝刀未老,在SoC中大有作为
过去15 年来,许多人都曾预测8 位微控制器即将退出舞台,然而这却是电子产业失误最大的预测之一;事实上,虽然16 和32 位产品已极为常见,8 位微控制器的需求仍继续成长,总值约达到今日100 亿美元全球微控制器市场的一半。推动8 位市场快速发展及成长的动力主要来自于8 位产品效能的大幅提升,特别是以8051 系列为基础的产品,其它原因还包括芯片内建功能的加强以及不断缩小的封装体积。今天,这类组件已能提供高达100 MIPS 的产出,这是8 位微控制器在短短几年前还无法想象的事情。然而重要的不仅是原始运算效能,真实世界是个模拟世界,因此系统也需要模拟和混合讯号功能,而且最好内建于芯片中。与外在世界的通讯也是问题,核心处理效能
[嵌入式]
8位<font color='red'>单片机</font>宝刀未老,在SoC中大有作为
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved