电源测试之——精确测量电源纹波

发布者:RainbowJoy最新更新时间:2012-03-20 来源: eefocus关键字:电源测试  电源纹波  精确测量 手机看文章 扫描二维码
随时随地手机看文章

精确地测量电源纹波本身就是一门艺术。在图 1 所示的示例中,一名初级工程师完全错误地使用了一台示波器。他的第一个错误是使用了一支带长接地引线的示波器探针;他的第二个错误是将探针形成的环路和接地引线均置于电源变压器和开关元件附近;他的最后一个错误是允许示波器探针和输出电容之间存在多余电感。该问题在纹波波形中表现为高频拾取。在电源中,存在大量可以很轻松地与探针耦合的高速、大信号电压和电流波形,其中包括耦合自电源变压器的磁场,耦合自开关节点的电场,以及由变压器互绕电容产生的共模电流

图1:错误的纹波测量得到的较差的测量结果。
图1:错误的纹波测量得到的较差的测量结果。

利用正确的测量方法可以大大地改善测得纹波结果。首先,通常使用带宽限制来规定纹波,以防止拾取并非真正存在的高频噪声。我们应该为用于测量的示波器设定正确的带宽限制。其次,通过取掉探针“帽”,并构成一个拾波器(如图 2 所示),我们可以消除由长接地引线形成的天线。将一小段线缠绕在探针接地连接点周围,并将该接地连接至电源。这样做可以缩短暴露于电源附近高电磁辐射的端头长度,从而进一步减少拾波。

最后,在隔离电源中,会产生大量流经探针接地连接点的共模电流。这就在电源接地连接点和示波器接地连接点之间形成了压降,从而表现为纹波。要防止这一问题的出现,我们就需要特别注意电源设计的共模滤波。另外,将示波器引线缠绕在铁氧体磁心周围也有助于最小化这种电流。这样就形成了一个共模电感器,其在不影响差分电压测量的同时,还减少了共模电流引起的测量误差。图 2 显示了该完全相同电路的纹波电压,其使用了改进的测量方法。这样,高频峰值就被真正地消除了。

图2:四个轻微的改动便极大地改善了测量结果。
图2:四个轻微的改动便极大地改善了测量结果。

实际上,集成到系统中以后,电源纹波性能甚至会更好。在电源和系统其他组件之间几乎总是会存在一些电感。这种电感可能存在于布线中,抑或只有蚀刻存在于 PWB 上。另外,在芯片周围总是会存在额外的旁路电容,它们就是电源的负载。这二者共同构成一个低通滤波器,进一步降低了电源纹波和/或高频噪声。在极端情况下,电流短时流经 15 nH 电感和 10 μF 旁路电容的一英寸导体时,该滤波器的截止频率为 400 kHz。这种情况下,就意味着高频噪声将会得到极大降低。许多情况下,该滤波器的截止频率会在电源纹波频率以下,从而有可能大大降低纹波。经验丰富的工程师应该能够找到在其测试过程中如何运用这种方法的途径。

关键字:电源测试  电源纹波  精确测量 引用地址:电源测试之——精确测量电源纹波

上一篇:轮胎压力监测系统无线数据传输的设计与实现
下一篇:利用普通数字存储示波器排除嵌入式系统数字类故障

推荐阅读最新更新时间:2024-03-30 22:24

WT3000三相功率分析仪在电源测试中的应用研究
    随着高尖端仪器设备的不断问世,为了满足其高性能,高精确度的要求,高稳定性纯净的电源就显得尤为重要。电源特性等因素对实验的顺利进行起着至关重要的作用。     WT3000以其强大的功能在电能质量分析中扮演着重要的角色。其便捷的操作和多种通讯接口,紧扣时代的主题。给人们在带来工作方便的同时,也为测试方法的改进提供有力的保障。甚至在某些方面可以颠覆繁冗的传统测试观念。     1 传统的电源测试     衡量电源性能的指标主要是指示准确度,带载调整率以及随供电电源变化的电压调整率等。直流电源更多地考虑纹波噪声带来的影响,而交流电源则是受失真度的影响比较大。所以在电源测试中,一方面得用指示设备(如数字多用表,示波器,失真度仪
[电源管理]
WT3000三相功率分析仪在<font color='red'>电源测试</font>中的应用研究
精确测量电源纹波
精确地测量电源纹波本身就是一门艺术。在图 1 所示的示例中,一名初级工程师完全错误地使用了一台示波器。他的第一个错误是使用了一支带长接地引线的示波器探针;他的第二个错误是将探针形成的环路和接地引线均置于电源变压器和开关元件附近;他的最后一个错误是允许示波器探针和输出电容之间存在多余电感。该问题在纹波波形中表现为高频拾取。在电源中,存在大量可以很轻松地与探针耦合的高速、大信号电压和电流波形,其中包括耦合自电源变压器的磁场,耦合自开关节点的电场,以及由变压器互绕电容产生的共模电流。     图 1 错误的纹波测量得到的较差的测量结果 利用正确的测量方法可以大大地改善测得纹波结果。首先,通常使用带宽限制来规定纹波,以防止拾取并非
[电源管理]
<font color='red'>精确</font><font color='red'>测量</font><font color='red'>电源</font><font color='red'>纹波</font>
stm32 精确电压测量法(内部参考电压)
芯片型号:stm32l051c8(其它型号请参考datasheet,仅供参考) 使用ADC采集电压时若使用外部参考电压,如果外部电压变化,且低于正常LDO工作电压时,输出的电压将发生改变,导致基准电压改变而导致ADC电压出现偏差,因此在该芯片上查看datasheet后得知,厂家已经为我们考虑到这种情况,并在出厂时将类似于基准电压的值写在flash中。该值的环境:25°C, VDD = 3V时的情况,可以直接地址访问读取,我读取了两个芯片的值,大概在1670值左右。通过该值我们就有一个标准。 接下来看参考手册中对该款芯片的介绍, 我们可以看到,通过读取ADC IN17可以获得内部参考电压值,假设我们现在要读取电池电量,需
[单片机]
stm32 <font color='red'>精确</font>电压<font color='red'>测量</font>法(内部参考电压)
示波器电源测试的几个步骤
  过去大家习惯用万用表进行电源测试,如果测试参数很多的时候非常麻烦。而现在使用示波器提供了许多自动测量功能,可以使用这些功能简单实现幅度测量(幅度、高、低、最大值、最小值、RMS、峰到峰值、正/ 负过冲、平均值、周期平均值、周期RMS)、定时测量(周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位)、综合测量。在实践中,很多工程师对于利用示波器进行电源测试的要点并不是很清楚,这里零星总结一些步骤和要点供大家参考。(这里的陈述是根据本人所使用的泰克混合信号示波器MSO4000系列(MSO4034)以及泰克的探头配置,不同示波器和探头会有些差异)   选择示波器的几个要点   1. 记录长度及分析工具
[测试测量]
RIGOL开关电源测试方案
  近几年,电力电子设备与人们的工作、生活的关系日益密切,程控交换机、通讯、电子设备、控制设备等都已广泛地使用了开关电源,大大促进了开关电源技术的迅速发展。在开关电源向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展的同时,也对产品设计验证和功能测试提出了更为严格的要求。本文中将以国内测试测量厂商RIGOL(北京普源精仪科技有限责任公司)的产品为例介绍一些开关电源的常用测试方案。   本测试方案中用到的仪器分别是RIGOL DS1302CA数字示波器、DM3064数字万用表及DG系列函数/任意波形信号发生器。   数字示波器应用方案   1、瞬态响应信号测量:   负载瞬变时间是一项动态时间,它是负载电流瞬变后开关电源的
[电源管理]
用示波器测量电源纹波分享
电源纹波定义 电源纹波是电源性能最直观的表现,直流稳压电源一般是由交流电源经整流稳压等环节而形成的,不可避免地在直流稳压量中多少带有一些交流成份,这种叠加在直流稳压上的交流分量就称之为纹波。 设置示波器 1. 首先探头要选择合适的档位,如果电压比较大,或者对带宽要求比较高的情况下可使用X10档,普通情况下建议使用X1档,避免不必要的噪声衰减影响纹波的测量。同时,记得要将示波器通道的衰减比也调成X1 2. 纹波属于是交流成分,所以“通道耦合”方式应该使用交流耦合方式,从而限制直流信号的输入。另外,示波器的垂直档位可调范围是有限制的,所以当直流信号过大时可能会导致无法看到纹波。选择交流耦合可以只显示交流纹波信号,方便观测波形
[测试测量]
用示波器<font color='red'>测量</font><font color='red'>电源</font><font color='red'>纹波</font>分享
电源纹波的产生、测量和抑制
1  引言       对于电子产品来说唯一不可缺少的是电源,但是它除了提供能量外,也带来了纹波、噪声等影响电子产品正常工作的影响。纹波电压对高放、本振、混频、滤波、检波、A/D变换等电路都会产生影响,在设计控制设备、电子仪器、电视、摄像机等电子产品时都要想办法尽量减小纹波。为此就要了解纹波、知道它是如何产生的、如何测量以及抑制方法。  2  电源纹波       纹波是附着于直流电平之上的包含周期性与随机性成分的杂波信号,指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。     纹波用示波器可以看到,在直流电压上下轻微波动,就像水平面上波动的水纹一样,所以被称为
[电源管理]
<font color='red'>电源</font><font color='red'>纹波</font>的产生、<font color='red'>测量</font>和抑制
低失真、双通道、差分放大器提供快速、精确测量结果
—— AD8270和AD8273差分放大器提供3倍于同类产品的带宽和转换速 率以及低失真特性为工业、航空和音频应用提高了测量速度和精度 关于产品AD8270 和 AD8273 AD8270 和AD8273是高速、低失真和精密双通道差分放大器,适用于要求非常快速和精密测量而不牺牲信号保真度的应用,例如航空、工业过程控制和高性能音频设备。 AD8270具有10 MHz带宽, AD8273具有12 MHz带宽,其带宽是其它同类放大器的3倍。另外,AD8270具有30 V/μs转换速率几乎是目前最相近的差分放大器的3倍;AD8273具有25 V/μs转换速率,比其它同类放大器高出1.5倍。这种优异的交流(AC)性能是由于它的直流(
[新品]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved