带有预加重和均衡的高速信号测量

发布者:人妙果华最新更新时间:2012-04-12 来源: 美国力科公司 关键字:仿真  示波器  均衡  预加重 手机看文章 扫描二维码
随时随地手机看文章

一、高速信号调试面临的挑战

在速率达到Gbps高速设计中,最常见的问题通常会是眼图不好、抖动过大等等。如图1所示,接收端芯片管脚处眼图很差,抖动成分很复杂。对于这样的问题,如果我们使用力科示波器配有的独特的抖动分解功能对抖动进行分解分析可以清楚的看到主要的抖动来自于330khz频点和125MHZ的谐波(如250MHZ、560MHZ左右)的频点,根据这些频点,我们可以更快捷更容易的发现此系统的问题主要可能是因为电源部分和125MZH时钟电路设计得不够完善,这样我们就可以有针对性的去改善这些电路。

当信号速率进一步提升后,仅改善设计电路可能并不能够完全改善信号眼图,此时发送端芯片一般会具备预加重调节功能,但是需要设计工程师去调节预加重为最优值以确保接收端信号眼图最优化。如图2所示,未加预加重/去加重时候,发送端眼图很好,但是接收端眼图很差;增加预加重后,接收端眼图得到有效的改善。由于芯片厂商一般会提供多种预加重的程度和幅度的调节,所以工程师们通常需要设法选择最优的,一般方法都是通过测试接收端的信号,每调节一次预加重,测试一次接收端信号眼图,需要经过很多次测试对比才能找到最优值,通常效率会比较低。

当信号速率更高时,通常达到5Gbps以上时,仅靠调试电路、调节发送端芯片预加重都难以改善接收端信号的眼图,如图3所示,发送端确实已经增加了预加重,但是接收端眼图仍旧闭合了,对于闭合的眼图就无法对其进行分析,而奇怪的是即使眼图如此糟糕,但是系统却仍旧工作良好,那么这是为什么呢——因为芯片接收端采用了均衡技术,虽然在接收端管脚处测得的眼图已经趋于闭合,但是均衡后的眼图通常会得到很好的改善。如图3右侧下方均衡后的眼图已经很好了,但是从图中可看出均衡后的点是在芯片内部,示波器可能不能够直接测试到均衡后的信号,而我们真正需要分析的其实是均衡后的眼图。那么大家应该会问,这样的话示波器在接收端已经测不到均衡后的信号,那么示波器还有什么用呢,在接收端芯片管脚处测试分析信号还有意义吗?力科眼图医生EyedoctorII软件可以为您解决这些问题。

图3 带有预加重和均衡的高速信号测试

[page]

二、典型的高速信号设计的主要步骤

由于当前工艺水平越来越高,信号速率高于5Gbps的信号标准已经越来越多,如PCIE2.0达到5Gbps,8Gbps的PCIE3.0标准也可能很快就会推出;USB3.0达到5Gbps,SATAIII达到6Gbps等等。信号速率的进一步提高对电路设计工程师也提出了更多严格的要求;

一个典型的硬件系统设计流程大概包括五个步骤:即总体方案设计:主要完成系统的功能框图、原理图设计:主要完成系统内各功能模块的详细电气连接图、PCB设计:主要完成系统内各功能模块的电气连接图、加工PCB版图为尚无元器件的实际单板、最后焊接好元器件进行功能信号等的调试和测试,如图4所示。

在过去低速系统中,通常只在硬件系统设计流程的最后一步进行测试验证来保证达到基本功能要求。而对于高速系统来说,要求会大大不同,第一个不同是需要在设计的更早阶段就要进行信号质量的分析,通常在硬件系统设计流程的第三步即已经完成PCB版图设计但尚未投板之前就进行严格的信号完整性分析;第二个不同是不仅仅是需要满足功能测试的要求,而且是每个高速信号在满足要求之外还需要较大的余量,以确保高速信号乃至整个系统的高可靠性。对于5Gbps以上的信号,还有个不同是有些标准中已经明确提出需要对接收端的进行容限测试,如USB3.0,而以往接收端测试只是选项测试。

三、典型的高速背板系统及其主要设计调试流程

下面我们以一个高速背板系统为例来说明下高速系统的设计流程。如图5所示为一个典型的由两个线卡加上一块高速背板构成的高速信号传输系统。我们看到,图最下方的为带有高速接插件的背板,通过接插件在左右各有两个线卡(line card)插在背板上,左边的线卡上有高速信号发送芯片,右边的线卡上有高速信号接收芯片,如图中红色线所示,高速信号从左边子卡上的发送端芯片发出,经过线卡上的传输线、接插件、背板上的走线、接插件、线卡上的传输线到达芯片接收端。子卡上的高速信号走线通常比较短,对信号的影响很小;背板上的走线都比较长,对信号影响最大,背板面积通常都比较大,生产成本也比较高,所以对于这样一个系统来说,背板设计的成败将至关重要;这样一个系统设计的主要挑战在于如何有效的解决背板传输线对信号质量的影响(如阻抗不连续带来的反射问题、走线过长带来的信号幅度过度衰减问题、高速信号的ISI问题、板间连接处的阻抗连续性问题)。当然选择好芯片、接插件、PCB板材等也是很重要的因素。此类问题都可以通过仿真方法与测试方法相结合来更好的解决。

将上页的高速背板系统作一个等效的模型,如图6所示,由于线卡上走线较短,所以我们把发送端和接收端线卡简化,以发送端Transmitter和接收端Receiver表示,通常发送端带有预加重,接收端带有均衡;背板上的长传输线主要用于传输信号,通常称为信道,即传输信号的通道,在SI类的文献中也称为互连,可以用S参数模型来等效其信道的响应。S参数模型可以通过VNA测试或者电磁场、CAD等仿真软件仿真得到。[page]

对于当今的高速系统设计来说,需要在更多的设计环节进行信号质量控制,对于上述的典型高速背板系统来说,一般有如下三个环节:(1)子卡、背板的PCB版图已经完成(子卡指发送端子卡和接收端子卡);(2)子卡已经加工完成,背板的PCB版图已经完成但是尚未加工;(3)子卡和背板的PCB版图已经完成;

对于第一个环节,即子卡、背板的PCB版图已经完成,则主要是通过软件仿真的方法。如使用HSPICE软件将发送端和接收端芯片的HSPICE模型和背板的S参数模型整合到一起进行通道仿真。此一环节进行分析的优点是目前只有电路设计图纸,还未做成实物,如果此阶段发现问题,则可以方便的修改调整设计,不会造成大量成本损失;而且必将大大缩短产品研发周期,节省时间;缺点是需要芯片厂家提供精确的HSPICE模型(有时候得到这样的精确模型比较困难);仿真软件所使用的信号源为理想信号源,未考虑子卡上的实际情况如串扰、反射等等,而且目前的高速仿真软件仿真速度比较慢,会大大影响调试效率。

第二个环节即子卡已经加工完成,背板的PCB版图已经完成但是尚未加工,此时需要通过仿真加测试的方法来分析。分析方法是是首先使用示波器分析子卡输出的信号质量,此时通常需要设计一个简易的夹具以方便将高速信号从子卡上引到示波器上;然后用相关的电磁场或者CAD软件提取背板的传输线的S参数模型;再设法将子卡输出的信号编成HSPICE可识别的源码格式,带入到HSPICE中进行仿真,从而得到经过背板以后的信号质量,从而评估背板的设计是否有问题,此过程也叫做“通道仿真(channel emulation)”。此环节分析的优点是可以将子卡输出的真实信号带入到仿真中,更接近实际情况;在背板生产之前进行评估,也同样会节省成本,而且背板加工通常也会更加昂贵。缺点有如:子卡夹具会给信号本身带来额外的影响,使用仿真软件不易消除夹具的影响;需要将测量到的信号转换成仿真软件能够识别的格式,会比较麻烦,如果示波器能够将测试到的信号直接在示波器中进行通道仿真,也就是说示波器具备类似仿真软件的功能,则会非常方便;而且目前的高速仿真软件仿真速度比较慢,会大大影响调试效率。

第三个环节是所有单板均已经加工完成;此环节的主要分析方法为直接测试,即使用示波器测试发送端、接收端各点的信号眼图。通过调节芯片发送端预加重、接收端均衡等来调节信号眼图质量。这一环节的优点是完全是在实际情况下分析信号质量,考虑了所有的实际因素;缺点是如果芯片具有预加重和均衡功能,则每调节一次预加重和均衡,就需要测试一次,测试效率会降低很多;而且测试不到均衡后的信号;

综上所述,高速信号测试中可能遇到的主要问题有:

(1)当必须使用夹具时,如何消除夹具的影响,即夹具反嵌

(2)当可以测试到发送端的信号时,如何仿真预测经过某一段传输线或者系统后(如高速背板)的信号质量即道仿真

(3)如果接收端芯片带有均衡功能,怎样才能观察到均衡后的波形

(4)如果接收端芯片关键处眼图已经闭合,如何对眼图和抖动进行分析

(5)在测试过程中有没有更高效的办法可以更快的调节预加重和均衡至最优值

四、力科最新第二代眼图医生软件(EyeDoctorII)提供了全面的高速信号测试解决方案

力科早在2006年就率先推出了独特的专用信号完整性分析软件眼图医生(Eyedoctor)软件;2009年又推出更加方便、更加强大、速度更快的最新一代专用信号完整性分析工具软件即第二代眼图医生EyedoctorII,如图7所示。

● Eye Doctor II 是安装在力科示波器上的信号完整性分析软件包,主要可以满足如下应用

精确补偿测试中夹具的效应
对串行数据链路通道响应的仿真
对TX与RX进行预加重和均衡调节
● 主要分析能力有

夹具/电缆/信道的去嵌(De-Embedding)
发送端预加重仿真(Transmitter Emphasis Emulation)
通道响应仿真(Channel Response Emulation)
接收端均衡仿真(Receiver Equalizer Emulation)
● 具有流程图式的主用户分析界面

[page]

● 支持添加预加重或者去加重,消除预加重或者去加重

● 可进行CTLE、FFE、DFE等均衡技术优化和分析

● 三种通道仿真、夹具去嵌类型

● 力科EYEDOCTOR II软件主要优点

信道仿真和均衡器仿真速度非常快,在几秒内就可以计算出几百微妙长的波形,几乎可以做到实时测量,实时计算出结果
信道仿真的输入波形是基于实测,考虑到了电路板上很多实际的随机因素
支持更多的均衡器种类-CTLE/FFE/DFE
最多可支持8通道16个端口的信道模型,可对多条链路之间的串扰进行分析
支持高达12Gbps的高速信号分析,能用于电信领域里面非常流行的10Gbps的背板预研、均衡仿真
可以对最多512Mpts的大数据量运算
支持非理想终端匹配时的高速串行信号分析
分析结果精确度和准确度足够高

五、结语

力科第二代眼图医生II软件提供了高速串行链路的发送端、信道、接收端的全方位的仿真与分析能力,改变了传统的高速串行设计的研发与调试方式,增强了高速信号的调试分析的效率,使用起来更加方便。配合力科最新Zi系列的示波器(模拟带宽高达30GHz),可以实现当前流行的10G信号的信道仿真、均衡仿真、以及全面的测量与分析。

参考文献

1. 高速串行设计的强大工具-Eye Doctor II,张昌骏,LeCroy Corporation

关键字:仿真  示波器  均衡  预加重 引用地址:带有预加重和均衡的高速信号测量

上一篇:基于误码率的眼图测试
下一篇:串行数据测试中的CDR

推荐阅读最新更新时间:2024-03-30 22:25

示波器的荧光屏的工作过程
示波器的电子枪和偏转系统的工作原理之前都已经给大家介绍过了,大家是否有新的认识了呢?为了帮助大家理解整个示波器的工作过程,大家有必要来了解一下示波器的荧光屏的工作过程,下面中国传感器交易网的专家来给大家介绍一下示波器的荧光屏的工作过程。 荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。 此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。 在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能
[测试测量]
如何把你的示波器变成一个电视机或者视频监控器
我们通常认为示波器是被用来分析电子电路的。但是很少有人注意到,当有视频信号的时候,它同样也可以像电视机一样工作。在这片文章中,你将会了解到如何把你的示波器变成一个电视机或者视频监控器。同时你也将会了解到,背后的原理是什么样的。 进入正题前我们来先看看效果是什么样的。 示波器的视频信号的显示。我们传统都认为示波器仅仅是枯燥得被用来分析电子电路,但是它同样可以像二十世纪时的电视机一样使用。如果要理解方法,那我们必需理解电视机是如何工作的。全球一共有三种视频信号,NTSC,PAL以及SECAM。NTSC是National Television System Committee的缩写,采用这种制式的主要国家有美国、加拿大和日本。而
[测试测量]
如何把你的<font color='red'>示波器</font>变成一个电视机或者视频监控器
示波器测量汽车爆震传感器波形及分析的方法
爆震是汽油发动机燃烧室中末端混合气自燃所造成的一种不正常燃烧现象。爆震不但会产生尖锐的敲缸声,还会使活塞、连杆、曲轴等机械部件受到过度的冲击,造成机械损坏,并导致发动机过热,从而大大缩短发动机工作寿命,因此发动机的爆震需要加以控制。目前最广泛使用的是用爆震传感器检测发动机振动的方法来判断有无爆震。 爆震传感器有共振型和非共振型两大类,共振型又分为磁致伸缩式和压电式两种,非共振型只有压电式。由于共振型传感器在发动机爆震时输出的电压比较高,因此无需使用滤波器即可判别有无爆震产生;而非共振型的爆震传感器需经滤波器检测出爆震的信号。现代绝大多数汽车采用共振型压电式爆震传感器,它是利用发动机产生爆震时,其振动频率和传感器本身的固有频率一
[测试测量]
<font color='red'>示波器</font>测量汽车爆震传感器波形及分析的方法
示波器的电源纹波测试分析
  一、什么叫纹波?   纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。   它主要有以下害处:容易在用电器上产生谐波,而谐波会产生更多的危害;降低了电源的效率;较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;会干扰数字电路的逻辑关系,影响其正常工作;会带来噪音干扰,使图像设备、音响设备不能正常工作。   二、纹波、纹波系数的表示方法   可以用有效值或峰值来表示,或者用绝对量、相对量来表示;   单位通常为:mV   例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量,即纹波系数=纹波电压/输出电压=10mv/12V=
[测试测量]
差分探头在示波器、信号源、功率放大器的应用
示波器是电子工程师最常用的测量仪器,而示波器探头毫无疑问是示波器最常用的配件。示波器探头是连接被测电路与示波器输入端的电子部件。换句话说,如果要获得更好的信号保真度,仅关注示波器本身是不够的,因为如果信号已经在探头处失真,那么无论示波器的质量如何,它都是没有用的。 BNC是无源探头,无源探头是最常见的探头,在购买示波器的时候厂家会有标配探头。无源探头常见,且容易使用。 差分探头测量的是差分信号。差分信号是互相参考,而不是参考接地的信号。差分探头可测量浮置器件的信号,实质上它是两个对称的电压探头组成,分别对地段有良好绝缘和较高阻抗。差分探头可以在更宽的频率范围内提供很高的共模抑制比。差分信号和普通的单端信号走线相比,最明显的
[测试测量]
差分探头在<font color='red'>示波器</font>、信号源、功率放大器的应用
如何用示波器的电流探头测量直流电流
工程师在设计移动电话和其他电池供电的设备时通常都需要进行更灵敏的电流测量,以确保设备的电流消耗在可接受的范围之内。电流的测量过程非常麻烦,因为您不得不中断电路并将测量仪器与电路串联起来。使用钳式电流探头和示波器可以轻松实施电流测量,并且不必破坏电路。但是对于毫安级或更小的电流,其测量难度大大增加。今天我们将介绍了几个非常实用的测量技巧,可以帮助您在示波器噪声较高的应用环境中精确测量电流。 示波器的噪声影响很重要随着电流电平的下降,示波器本身具有的噪声将变成一个现实问题。所有示波器都有一个多余的特征 — 垂直噪声。当您测量低电平信号时,测量系统的噪声可能会导致实际信号测量的精度下降。由于示波器是一种宽带测量仪器,所以示波器的带
[测试测量]
如何用<font color='red'>示波器</font>的电流探头测量直流电流
示波器对电气快速瞬变事件的检测分析
你还可以检测到由EFT事件造成的“矮”脉冲,并最终计算出一个EFT脉冲的能量。利用这些信息,就可以对设计进行修改以提高抗EFT干扰性能。EFT事件是在电流瞬时中断的情况下发生的,会在触点之间形成电弧放电,进而破坏电路和系统。电弧产生的电磁场会通过电缆、走线和连接器耦合进电路通道。引起EFT事件的常见原因包括继电器触点颤动、断路器的打开和闭合、电感负载的切换以及设备断电。电触点之间气隙的击穿也常常会触发EFT脉冲的快速爆发。 顺序捕获 若要捕获一连串的快速脉冲(如EFT 脉冲) 或被长时间间隔的事件窄片( 比如EFT突发脉冲串),顺序采集是一种理想的方法。在顺序捕获模式下,示波器可以显示由许多固定大小的分段组成的完整波形。通
[测试测量]
GPS接收机中高频通道的仿真
  目前,GPS系统已被广泛地应用到人们生活的各个领域。随着GPS定位理论研究的不断深入以及硬件的不断改进,GPS定位系统也日益完善。本文将从软件实验的角度分析GPS接收机高频通道的工作原理;在此基础上,设计一个增益分配方案,分析下变频电路的噪声特性,同时给出高频通道电路在System View平台上的系统仿真结果。          1 接收机的天线和传输损耗   GPS信号由于使用了码元速率fb1=1.023MHz的扩频码(C/A码),调制后信号将占用2.046MHz带宽。L1波段(1575.42MHz)信号的功率谱密度示意图如图1所示。扩频后信号带宽在fL1=1575.42MHz中心频率的带宽为2.046MHz,
[安防电子]
GPS接收机中高频通道的<font color='red'>仿真</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved