飞机防滑刹车测试系统设计

发布者:美丽的1号最新更新时间:2012-07-19 来源: 21ic 关键字:USB  DSP  飞机防滑 手机看文章 扫描二维码
随时随地手机看文章

  飞机防滑刹车控制器作为飞机防滑刹车系统的核心部件,其设计好坏直接影响到飞机的安全起飞和安全着陆刹车,系统性能的好坏需要通过测试设备来检验。我国对控制器的研究已有半个多世纪的时间,从机械-气压式到目前的数字式,均取得了良好的效果。而对控制盒测试的研究却处于一片空白,迄今为止仍用人工仪器对控制盒进行性能测试,不仅操作复杂,而且耗用大量的空间和时间。本文设计的刹车测试系统可以弥补此项空白。

  微机技术的发展、单片机的广泛应用以及便携式电脑的出现,为测试系统的发展提供了良好的硬件平台,高速化、便携式、微型化、低成本、智能化成为测试系统的最大特点。通用串行总线(USB)以其即插即用、速度快、低成本等特点而倍受青睐,逐步取代了传统的RS232通信,广泛应用于各种测试系统中。其中,USB接口的设计方案很多,主要有两种类型:一种是采用MCU和USB接口芯片分离式结构,此类方案的特点是成本和开发难度较低。另一种方案是采用嵌入式结构,即采用带USB接口的MCU或内嵌MCU的USB接口芯片,此类方案的特点是成本高、不适用于简单和低成本的数据采集测试系统。这里采用了第一种方案,实用并且开发周期较短

  1 数字式飞机防滑刹车测试系统的组成

  数字式飞机防滑刹车测试系统的组成如图1所示。图中虚线框内为飞机防滑刹车测试系统的原理框图,测试系统需要向防滑刹车控制器提供模拟机轮速度信号、模拟踏板信号、各种开关信号和各种故障状态,以便模拟实际的刹车状态。测试系统采集控制器输出的阀门电压和参考速度信号,通过USB芯片传输给上位机,由上位机来显示,依此判断控制器的工作状态。

数字式飞机防滑刹车测试系统的组成

  2 主要硬件电路的设计

  2.1 前端信号调理电路

  前端信号调理电路如图2所示。参考速度信号、阀门电压信号、模拟踏板信号均为直流信号,范围为0~10V,由于DSP的A/D端只能接收0~5V的电平,因此需要进行电平转换。先将输入信号进行跟随,提高输入阻抗,再进行两级反相比例放大。将0~10V的输入电压转换为0~5V的输出电压,末端的两个二极管起限幅作用。

前端信号调理电路

  2.2 模拟机轮速度信号电路

  在实际的刹车过程中,机轮速度传感器产生的信号为近似正弦信号,所以利用正弦信号代替机轮速度信号。信号发生电路原理框图如图3所示。AD9850输出的信号经过I/V转换电路转换为电压输出,输出电压经过有效值/直流转换电路输出交流信号的平均值,该值和I/V转换输出的信号做减法运算,得到以0电平为基准的交流信号。再与直流偏置做加法运算,得到一个带直流偏置的正弦信号。经过二阶压控低通滤波后输出峰峰值为0.6~5V可调、直流偏置0~5V可调的正弦信号,此信号可作为机轮速度模拟信号

信号发生电路原理框图

  AD9850为美国ADI公司推出的一款DDS集成芯片,8位并行数据接口D0~D7或者一位串行数据接口D7,在写时钟端W_CLK和频率升降控制端FR_UD的控制下,可直接输入频率、相位等控制数据,最大工作时钟为125MHz,最小工作时钟为1MHz。内有32位累加器、sin/cos表,集成10位D/A电流型输出,采用28脚贴片封装。

  AD9850接口电路如图4所示,D0~D7口与DSP的数据线D0~D7相连。复位引脚与DSP的PC0口相接,高电平复位,复位时间不低于40ms。FR_UD引脚与DSP的PC1脚相接。WCLK1是地址线经过可编程逻辑器件GAL16V8或逻辑后产生的片选信号。Rset连接3.9kΩ的电阻,设定最大的输出电流为10mA。IOUTB端连接24Ω的电阻,作为电流输出补偿电阻。 

AD9850接口电路

  2.3 USB通信电路设计

  CH375为国内自主研发的新型USB接口芯片。它支持3.3V和5V供电,支持全速USB设备接口,兼容US-BV2.0;提供一对主端点和一对辅助端点,支持控制传输、批量传输、中断传输;具有省事的内置固件模式和灵 活的外部固件模式。内置固件模式下屏蔽了相关的USB协议,自动完成标准的USB枚举配置过程,完全不需要本地端控制器做任何处理,简化了单片机的固件编程;通用的8位并行数据总线控制简单,采用4线控制:读选通、写选通、片选输入、中断输出;通用Windows驱动程序提供设备级接口;体积小,采用SSOP-28封装。[page]

  与DSP的接口连接如图5所示。CH375的8位并行接口直接与DSP的数据线低8位相连。/WR和/RD分别与DSP的WR和RD信号相连,DSP的地址线A0与CH375的A0端口相连,作为CH375的命令和数据端口的选择,片选信号是经过可编程逻辑器件GAL16V8进行与逻辑后产生的片选信号。电容C4用于CH375内部电源节点退耦,可选用1000pF~0.01μF的独石或者高频磁片电容。电容C3和C5构成外部电源退耦。晶体Y1、电容C1和C2构成CH375的时钟振荡电路,Y1选用12MHz晶振,Cl和C2选用15pF~30pF的独石或高频磁片电容。中断端口与DSP的外部中断1相接,下降沿有效。

与DSP的接口连接

  3 测试系统的软件设计

  测试系统的软件设计包括下位机程序设计和上位机用户平台的开发。

  3.1 下位机软件的设计

  下位机程序包括系统初始化、A/D数据采集子程序、正弦信号发生子程序和USB中断服务子程序。系统初始化包括DSP寄存器的初始化、AD9850初始化和CH375的初始化。AD9850初始化包括复位AD9850和控制字初始化,先让PC0口输出高电平,延时40ms后,输出低电平,完成AD9850复位;将控制字0x00写入AD9850,定义为并行输入,初始相位为0,电源休眠控制。CH375的初始化先对CH375自检,判断CH375是否工作正常,如果工作正常则进入下一步,否则继续等待;将CH375配置为内置固件模式。A/D数据采集完成16路模拟量的采集,采用中值法数字滤波技术对数据进行处理。正弦信号发生子程序先计算输出频率的频率控制字,向AD9850中写入控制字,再将频率控制字从低字节

到高字节分4次通过数据线写入AD9850中。USB数据发送过程为:先向CH375写入WR_USB_DATA命令,等待USB主机取走数据,然后CH375锁定当前的缓冲区,防止重复发送数据,将INT#引脚设置为低,进入USB中断服务子程序,执行GET_STATUS命令获取中断状态,执行WR_USB_DATA命令,写入待发送数据。执行UNLOCK_USB命令释放缓冲区,退出中断服务子程序,等待发送下一组数据。

  3.2 上位机用户平台的设计

  采用VC++6.0作为上位机开发工具,实现数据显示、保存、分析等功能。上位机用户平台具有以下特点:①通过波形、数值、指示灯等方式实时显示数据和系统特性;②光标读取数据参数,系统可以利用光标读取任意时刻的参数;③方便的标记功能,可以在任意两点之间进行标记,计算对应波形图的值;④对于历史数据可以通过文件形式保存下来。上位机流程图如图6所示。

上位机流程图

 

  USB为计算机外设提供了一个全新的接口标准。它不占用IRQ和DMA资源,具有热插拔、即插即用、自动配置的能力。在本测试系统中,采用USB1.1协议设计与计算机通讯,与笔记本电脑相结合可以构成移动式的飞机防滑刹车测试仪,可以方便地使用于机场、野外等传统人工测试设备不便使用的场合。

关键字:USB  DSP  飞机防滑 引用地址:飞机防滑刹车测试系统设计

上一篇:可支持电阻温度检测器的高精度接口
下一篇:一个简单的双恒流负载测试低电流电源

推荐阅读最新更新时间:2024-03-30 22:27

基于单片机的心电血压监测仪USB接口设计
  引言   家用心电血压监测系统由采集记录设备和上位机电子病历管理系统组成,因此,需要解决数据传输方式问题。传统的通信接口采用简单的RS-232串行UART ,这种方式速度慢且适用性差,而 USB 转串口芯片的传输性能不能得到根本改善。USB总线接口则具有速度快、易于扩展、支持热插拔、使用灵活方便等优势,尤其适用于家用设备与计算机的通信连接。   本文重点讨论USB通信协议及其接口芯片的控制方法,针对临床需求,设计实现了具有心电、血压智能监测和USB高速数据传输功能的小型化设备,提供心电、血压数据电子病历查询、打印和网络传输等功能,对于提高家庭健康保健水平具有很重要的意义。   监测仪的USB接口电路设计   系统
[医疗电子]
基于单片机的心电血压监测仪<font color='red'>USB</font>接口设计
基于软件无线电数字下变频的FFT技术在频谱分析仪中与单片DS
引 言 在频谱分析仪中,传统的FFT实现方法首先是对低中频信号进行ADC低采样率采样,然后将采样数据保存在RAM中;当数据足够后,进行FFT运算,将获得的频谱数据显示在屏幕上。这种FFT方法可以说是简单易行,但在处理宽带高中频信号方面,由于受Nyquist采样定理的约束,需要使用高采样率。此时实现窄的分辨率带宽将需要大量的采样数据,这就使得系统不仅需要提高存储空间,而且增加了运算量,同时有很多冗余输出数据,导致算法的效率非常低下。 随着高速A/D变换和DSP技术的发展,软件无线电设计思想也被应用到频谱分析仪中,基于软件无线电数字下变频的FFT技术能够有效减少上述传统FFT技术存在的问题。在高中频、高采样率系统中,能实现信号频谱
[测试测量]
基于软件无线电数字下变频的FFT技术在频谱分析仪中与单片DS
USB Type-C PD CC逻辑芯片中的角色定义
USB Type-C凭借其自身强大的功能,在Apple, Intel, Google等厂商的强势推动下,必将迅速引发一场USB接口的革命,并将积极影响我们日常生活的方方面面。本文讨论一个重要的专业问题:USB Type-C设备到底是否需要CC逻辑检测与控制芯片? 要回答这个问题,我们得先从基本概念谈起。 DFP(Downstream Facing Port): 下行端口,可以理解为Host,DFP提供VBUS,也可以提供数据。典型的DFP设备是电源适配器,因为它永远都只是提供电源。 UFP(Upstream Facing Port): 上行端口,可以理解为Device,UFP从VBUS中取电,并可提供数据。典型设备是U盘,
[嵌入式]
<font color='red'>USB</font> Type-C PD CC逻辑芯片中的角色定义
全球首款USB-C口iPhone X成交!
前不久,工科专业的在校生Ken Pillonel通过“魔改”,将一部iPhone X从Lightning闪电接口换成了USB-C接口。 因为内部集成有转接器,所以通过USB-C不仅可以充电,还能传输数据。 整个项目已经开源,且Pillonel还在个人频道详细分享了过程,包括对苹果C94接口的逆向工程等,说实话,相当复杂。 这台可以称得上是全球第一款USB-C接口的iPhone X,前几天被放上eBay拍卖,截稿前已经成交,价格达到了令人咋舌的86001美元(约合54.95万元),累计有116次出价。 不过,Pillonel也是“丑话说在前头”,他警告买家,入手后不能更新升级、还原或者抹除设备,也不要试图打开后盖做新的改造,
[手机便携]
基于μCOS-II的USB主机系统设计
μC/OS-II 是美国学者Lacrosse 设计的一个优秀的嵌入式实时操作系统,其代码绝大部分用ANSIC 语言编写,可用于8 位、16 位、32 位、甚至64 位微处理器、微控制器、数字信号处理器等,具有操作系统最基本最核心的功能,非常适于在小型系统和片上系统(SOC)中使用。USB 为个人电脑与嵌入式设备之间的连接提供了一种标准化、单一化的接口,其高效性和可靠性使得它已经成为嵌入式系统的首选接口。此LPC2378 读卡器具有卡票检测、消费扣钱、系统升级、下发黑名单、在线充值、余额查询等功能,但这些功能的实现都依赖于上位机的请求,业务应用模块只有在获得相应的请求后才能进行相应的处理并将处理结果返回给上位机。而USB 主机系统就
[单片机]
基于μCOS-II的<font color='red'>USB</font>主机系统设计
大联大品佳集团推出USB Power Delivery电源转换解
电子网消息,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)和立锜科技(Richtek)的USB PD电源转换解决方案。该方案的特点是利用USB Type-C界面中最具有重大意义的CC脚位,让各埠的电源角色和电缆能力均可通过它来进行宣告判读。同时再加上USB-PD相关协议,使电压转换、高功率传输和更多样功能与保护均可逐一实现。 电源快充已经演变成了一项智能型手机的必备功能,USB-IF组织在日前发布了USB PD 3.0的重要更新,旨在一统快速充电技术规范的PPS(Programmable Power Supply),实现了对高通QC4.0/3.0、联发科PE3.0/
[半导体设计/制造]
让繁杂的音视频压缩标准不再束缚您的设计
  AVS视频从诞生那一刻开始,科学家和工程人员就在为缩小音视频码流而做着不懈的努力,各种先进的视频压缩算法不断涌现和标准化,这不仅是为了满足降低视频信号的存储量和带宽的需求,更是为在此基础上提供更高的分辨率和更佳的音视频质量,以满足消费者对音视频体验的无休止的需求。   无论在便携式多媒体播放还是在数字家庭娱乐领域,多样的音视频压缩标准一直是工程师比较头疼的问题。在便携式领域,由于移动带宽的昂贵和网络多媒体内容的丰富,音视频压缩标准更新很快,种类也十分繁多,给工程师的设计造成了持续的挑战。在家庭娱乐领域,随着高清内容的逐渐普及和传输方式的多样化,视频带宽不断增加,视频处理和各种高速接口的设计也更加复杂,机顶盒和数字电视的设计面
[嵌入式]
让繁杂的音视频压缩标准不再束缚您的设计
基于瞬时无功电流理论三相谐波提取的DSP实现
摘要:首先回顾和总结了目前谐波提取的方法并比较了各种方法的特点;详细地讨论了一种基于瞬时无功电流理论三相谐波提取的方法并讨论了这种方法的低通数字滤波器设计,具体分析研究了滤波器的种类、截止频率和采样频率对三相谐波提取效果的影响。最后仿真和实验研究了基于瞬时无功电流理论dq变换方法。 关键词:有源滤波器;谐波提取;瞬时无功功率理论 引言 有源滤波器是目前国内外谐波抑制技术的一个重要研究方向,在国外APF技术已得到了大量应用。APF技术的原理就是把三相畸变电流的谐波提取出来作为指令电流,控制PWM主电路产生一反向的谐波电流以补偿电网中的谐波电流,因此,三相谐波电流提取的效果直接决定了APF谐波补偿的效果。 图1 1 现有三
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved