基于线阵CCD的线路方向测量系统的开发

发布者:WanderlustHeart最新更新时间:2012-12-24 来源: 电子设计工程 关键字:线阵CCD  旋转编码器  准直激光 手机看文章 扫描二维码
随时随地手机看文章
1 系统概述
   
随着铁路列车的不断提速,铁路轨道在列车的动力作用下,变形不断积累。曲线轨道的受力情况比直线轨道复杂,变形较快。一种最常见的表现方式为曲线轨道方向的错乱。为确保行车的平稳和安全,必须要定期检查曲线轨道的方向,及时把它整正到原来的设计位置,并恢复其原来的曲率。
    整正曲线的方法很多,目前在铁路维修工作中,最常用的是绳正法,它利用曲线上正矢与曲率之间的关系,改正正矢,使之恢复原有的设计曲率。但采用绳正法时,长弦线不易拉直,人工对直尺读数误差较大,费时费力,精度不高。随着列车速度的提高,对铁路曲线轨道方向的要求越来越高,因此很有必要研制一种快速、便捷、智能化、高精度、基于线阵CCD的线路方向测量系统。

2 国内现状及系统建设的必要性
2.1 国内技术现状
   
目前,国内对线路方向测量的现有方法:
    一是通过轨检车、添乘仪的打分,但里程不准确而且没有量化的偏差值;
    二是工人现场对直线地段进行目测,曲线地段采用绳正法测量正矢,效率低、精度差;
    三是在特殊区段采用水准仪定线穿焦点的方法测量方向,操作复杂,效率较低。
2.2 系统建设的必要性
   
随着铁路第六次大提速的结束,中国正式走向高铁时代。行车速度已有很大的提高,即对既有铁路线路的技术标准有了更高的要求,尤其是对既有铁路曲线的维修提出了更高的要求。同时原来的铁路线路维修方式日益被机械化维修所取代,尤其是大型养路机械的广泛使用,这就要求维修人员改变观念,改变传统的维修方式,运用机械化进行线路维修养护,特别是线路方向维修养护。
    随着铁路提速、重载的不断发展,铁路轨道受到列车的冲击力越来越大,引起线路在水平和竖向方向的变形也相应增大,变形积累到一定程度就会引起列车晃车,严重影响旅客乘坐舒适性和列车运行安全。因此,铁路部门工务段一直把线路方向整治和消灭三角坑作为线路维修的重点。但目前现场作业只能采用目测和绳正法进行测量,效率较低且精度不高,难以满足铁路运输的发展,因此,研制开发一种快速、便捷、智能化、高精度、基于线阵CCD的线路方向测量系统是十分必要的。

3 系统关键技术
   
研究一种可在钢轨上移动的基座,一端安装准直激光光源,一端安装CCD测量装置,测量时安装准直激光光源的基座固定,安装CCD测量装置的基座沿钢轨移动,通过安装在移动基座上的编码器测量距离,CCD通过光学系统接收编码标尺的像素位移信号,并将编码器测量的1 m(或任意设定值)整数倍位置的像素位移信号进行记录,数据处理系统把像素位移信号进行二值化处理后,将被测目标的中心值从背景中分离出来。从而得到目标相对CCD中心像元的偏离值。将测量数据传输至终端PC进行分析计算,判断线路的方向并给出偏差量。
    其关键技术为:
    (1)CCD测量装置的选择和控制;
    (2)编码标尺的设计和制作;
    (3)数据处理系统研究;
    (4)编码器精度的控制;
    (5)基座的设计。

4 系统实现目标及主要研究内容
4.1 主要目标
   
(1)研制开发一种快速、便捷、智能化、高精度、基于线阵CCD的线路方向测量装置。要求便携、准确、经济、适用性强。
    (2)自动完成测量作业,测量过程自动化,减少人为因素干扰,测量结果可在屏幕显示并储存,如测量过程中出现异常,可给出提示并显示异常的原因。
    (3)测量精度小于1 mm。
4.2 主要研究内容
   
基于线阵CCD的线路方向测量系统中测量装置的测量原理是在钢轨上架设线路方向测量装置,线路方向测量装置由光学系统(准直激光光源)、线阵CCD相机、图像采集电路、信号处理电路、控制及显示电路、软件等组成。其结构框图如图1。

a.JPG[page]

    在待测点固定线路方向测量装置,编码标尺作为测量目标,通过安装在移动基座的编码器测量移动的距离,在距离测量装置1 m(或任意设定值)整数倍位置分别对测量目标进行测量,编码标尺通过线路方向测量装置的准直激光光学系统在光敏面元上形成光学图像(如图2)。

b.JPG


    CCD器件将光学图像输出,得到被测对象的视频信号。视频信号处理电路对CCD输出的视频信号进行二值化处理后,将被测目标的中心值从背景中分离出来。从而得到目标相对CCD中心像元的偏离值。
    5 m、10 m、15 m处等距离的偏离值经过相减,即可得到该段轨道线路的方向偏移量。
    本系统测量装置主要由光学测量系统、距离测量系统、可移动基座、计算处理系统、管理系统组成。
    (1)光学测量系统
    光学测量系统由CCD成像仪和编码标尺组成(见图3)。

c.JPG


    在测量工作开始前,CCD成像仪通过固定基座固定于待测钢轨起点处,将编码标尺通过移动基座固定钢轨上,通过控制按钮使编码标尺成像于CCD上,移动条码标尺,再次通过控制按钮使条码标尺成像于CCD,再移动,再次成像……以此类推。控制系统自动计算编码标尺在5 m、10 m、15 m……处距离的偏离值,经过相减,即可得到该段轨道各测点处的正矢量。
    (2)距离测量系统
    距离测量主要靠安装在基座车轮上的编码器实现,编码器与车轮同轴安装。通过车轮半径(周长)和编码器的旋转输出脉冲即可计算出基座的行走距离。
    (3)移动和固定基座
    基座主要用来固定CCD成像仪和编码标尺。必须满足快捷安装要求,并保证CCD成像仪和条码标尺距钢轨内侧顶面下16 mm处有相同距离。
    (4)计算处理系统
    能够根据输入的特定值(如1 m、5 m等)的整数倍距离,控制CCD成像仪对编码标尺的图像进行采集、并对图像进行分析,计算出各测点的正矢值进行储存和显示。
    (5)管理系统
    根据圆曲线和缓和曲线计划正矢的计算,编制计算机程序,能够根据输入的曲线轨道特征值计算出曲线轨道各处正矢值并与测量值进行比较,计算拨量值。

5 系统上线试验结论
   
该系统在太焦线的三个曲线段上多次试验,并对测量结果用绳正法进行复核,效果良好。
    实际应用表明:针对铁路曲线测量现状研制的“基于线阵CCD的线路方向测量系统”总体思路符合铁路工务部门大中修规范的要求。检测操作便捷、精度高,可以避免绳正法在风力较大时产生过大误差的问题。另外,通过上位机管理软件的开发将正矢测量与拨道量计算集为一体,大大缩短了正矢测量→拨道量计算→拨道实施的时间,提高了工作效率。本系统的研制开发,提高了铁路工务部门在线路维护方面的测量精度和工作效率,有利于保持线路的稳定性和安全性,适合在铁路及其他轨道运输行业中推广。

关键字:线阵CCD  旋转编码器  准直激光 引用地址:基于线阵CCD的线路方向测量系统的开发

上一篇:蓄电池循环寿命测试系统设计分析
下一篇:基于PCI-9846高速数字化仪的变频器输出性能测试系统

推荐阅读最新更新时间:2024-03-30 22:33

线CCD图像传感器驱动电路的设计
1 引言 电荷耦合器件(CCD.Charge(Couple Device)是20世纪60年代末期出现的新型半导体器件。目前随着CCD器件性能不断提高.在图像传感、尺寸测量及定位测控等领域的应用日益广泛.CCD应用的前端驱动电路成本价格昂贵,而且性能指标受到生产厂家技术和工艺水平的制约.给用户带来很大的不便。CCD驱动器有两种:一种是在脉冲作用下CCD器件输出模拟信号,经后端增益调整电路进行电压或功率放大再送给用户:另一种是在此基础上还包含将其模拟量按一定的输出格式进行数字化的部分,然后将数字信息传输给用户,通常的线阵CCD摄像机就指后者,外加机械扫描装置即可成像。所以根据不同应用领域和技术指标要求.选择不同型号的线阵CCD器件,设
[传感技术]
基于DSP的线CCD实时测量系统设计
0 引 言 对于CCD光积分信号的处理,目前有很多种方法。DSP作为专用的数字信号处理芯片应用于ccD信号的处理,可以实现在线实时高速测量。将DSP处理系统与输入输出系统结合,可以使普通测量系统脱离对于计算机的依赖,摆脱长距离信号传输的干扰问题和计算机接口速度的瓶颈。DSP(数字信号处理器)是一种具有高速性、实时性和丰富的芯片内部资源的处理器,它的出现为人们解决这个难题提供了一条新的道路。本文将以型号为TMS320F206PZA的DSP为例,结合 ADC器件ADS803E,介绍DSP在线阵CCD测量系统中的应用。 1 系统结构 整体系统结构如图1所示。 从系统结构图中可见,本系统由CPLD产生CCD驱动脉冲及系统全局
[测试测量]
采用线CCD的便携式光谱采集系统设计
微量物质成分及含量分析在科研、安检等领域发挥着重要的作用。目前,微量成分分析常用的方式是使用分光光度计,其原理是利用物质对光的吸收特性,测量其吸光度,通过吸收峰的位置估计物质的成分,并利用峰的高度来估计成分的含量。传统的分光光度计主要应用在物质的分析与检测上,功能比较单一。随着芯片集成技术的发展和光栅技术的进步,现在的分光光度计在功能、体积、检测速度上发生了革命性的改变。例如,利用分光光度计来组成田野土壤监测网络,可以实时检测土壤的物质含量,使得农业生产者能有效的针对某块区域进行土壤的改良从而提高产率。   分光光度计的核心部分是光谱采集和处理系统,其通过光电转换器件把经过物质吸收后的光谱信号采集进来,并通过显示器件实时显示。传
[模拟电子]
采用<font color='red'>线</font><font color='red'>阵</font><font color='red'>CCD</font>的便携式光谱采集系统设计
基于线CCD的图像和位置传感系统
  0 系统概述   本系统原理如图l所示,计算机通过RS232接口和C8051微控制器进行通讯,控制整个系统的运行;C8051微控制器控制CCD进行光信号的采集,同时将采集的数据传输至计算机;应用Labview编写的人机交互软件可以全自动地操作整个系统,并对采集的数据进行分析、处理和一维模拟成像。   平行光通过单缝等光学元件时,会按照一定的光学规律分布,线阵CCD则能够将一维的光信号转化为模拟电信号,再通过一系列的电信号处理,就能够在计算机上显示光强的分布。同时,如果中间的光学器件是一个单缝,则缝的中心点对应的是光强的最大值,通过这个原理能够标记器件的位置信息(如图1)。本系统对弹簧振了和单摆等动力学系统进行了测试,
[单片机]
基于<font color='red'>线</font><font color='red'>阵</font><font color='red'>CCD</font>的图像和位置传感系统
旋转编码器还可以这样设计
  智能旋转换向编码器提供输出选项、简单调零、简化BOM和基于PC的见解   新方法开启新机遇   一直以来编码器用户都不愿意改变,因为一些声称可提供卓越性能和可靠性的创新电机控制技术,必须拥有出色的纪录和往绩来作为支持,才可以用于工作场地或工业装置。虽然光学编码器和磁编码器历史悠久,而且基于看似“更具体”的物理概念,但是电容式编码器亦是基于经过全面试验的原理,并且已经通过多年来在现场的成功实际应用中得到证明。这种不同于运动感测的数字式交替方法提供了许多益处,为利用旋转换向编码器的设计人员提供了全新的智能水平。   旋转编码器对于几乎所有运动-控制应用来说都很关键,由于无刷直流电动机(BLDC)使用增加,使得旋转编码器的需求进一步扩
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved