涡街流量计的流量信号是由旋涡的频率反映的,所以涡频如何检出,是涡街流量计研制的一个重要课题.
从目前涡频信号检测原理来分,大致有这样两类:
①检测产生旋涡后在旋涡发生体附近的流动变化频率,主要通过热敏元件完成,
②检测旋涡产生后在旋涡发生体上受力的变化频率,这主要通过压电敏感元件完成.
下面,我们将分别来讨论这两种检测方式的具体实例.
第一种检测方法以圆柱形旋涡发生体热线式为例,其结构可见图3—9所示.圆柱体表面开有导压孔,与圆柱体内部空腔相通.空腔由隔墙分成两部分,在隔墙的中央部分有—小孔,在小孔中装有检测流体流动的铂电阻丝.
当旋涡在圆柱体下游侧产生时,由于升力的作用,使得圆柱体下方的压力比上方高一些.圆柱体下方的流体在上下压力差的作用下,从圆柱体下方导压孔进入空胶,通过隔墙中央部分的小孔,流过铂电阻丝,从上方导压孔流出.如果将铂电阻丝加热到高于流体温度的某温度值,则当流体流过铂电阻丝时,就会带走热量,改变其温度,也即改变其电阻值.当圆柱体上方产生一个旋涡时,则流体从上导压孔进入,由下导压孔流出,又一次通过铂电阻丝,又改变一次它的电阻值.由此可知:电阻值变化与流动变化相对应,也就与旋涡的频率相对应.所以,可由检测铂电阻丝电阻变化频率得到涡频率,进而得到流量值。
将铂电阻丝的电阻值变化转换成电信号的电路如图3—11所示.
第二种检测方法以三角柱旋涡发生体为例.其结构可见图3—10所示.在三角柱的两侧装有两片弹性金属薄膜,它们兼为电容器的极扳,里面装有电极板.电极扳与金属膜之间充满了油,借以传递压力.
这样当三角拄下面产生一个旋涡,同时下方的压力就高于上方压力,将三角拄下方的金属膜向里压入,而上方的金属膜就向外弹出,改变了两个电容器各自的电容量.这样,对应于交替产生的升力,两组电容器的电容量就差动地变化.于是,电容量变化与升力变化相对应,也就与旋涡的发生频率相对应.这样,就可由电容量变化频率得到旋涡频率,进而得到流量值.
将电容量变化转换成电信号的电路框图见图3—22所示.涡检测传感器由两组金属膜和电极板组成差动变化电容器,将它放在静电容检测电桥上,由RF振荡回路产生激励.当涡产生时,静电容量发生变化,导致电桥不平衡,将该不平衡势通过RF放大电路放大,经检波后就得到与涡频相对应的信号.将该信号放大并整形成矩形波,由定电流回路作为给定电流脉冲输出.反馈回路用于补偿温度变化引起的电桥不平衡。
关键字:涡街流量计 旋涡发生频率 涡频信号
引用地址:涡街流量计旋涡发生频率的检测
从目前涡频信号检测原理来分,大致有这样两类:
①检测产生旋涡后在旋涡发生体附近的流动变化频率,主要通过热敏元件完成,
②检测旋涡产生后在旋涡发生体上受力的变化频率,这主要通过压电敏感元件完成.
下面,我们将分别来讨论这两种检测方式的具体实例.
第一种检测方法以圆柱形旋涡发生体热线式为例,其结构可见图3—9所示.圆柱体表面开有导压孔,与圆柱体内部空腔相通.空腔由隔墙分成两部分,在隔墙的中央部分有—小孔,在小孔中装有检测流体流动的铂电阻丝.
当旋涡在圆柱体下游侧产生时,由于升力的作用,使得圆柱体下方的压力比上方高一些.圆柱体下方的流体在上下压力差的作用下,从圆柱体下方导压孔进入空胶,通过隔墙中央部分的小孔,流过铂电阻丝,从上方导压孔流出.如果将铂电阻丝加热到高于流体温度的某温度值,则当流体流过铂电阻丝时,就会带走热量,改变其温度,也即改变其电阻值.当圆柱体上方产生一个旋涡时,则流体从上导压孔进入,由下导压孔流出,又一次通过铂电阻丝,又改变一次它的电阻值.由此可知:电阻值变化与流动变化相对应,也就与旋涡的频率相对应.所以,可由检测铂电阻丝电阻变化频率得到涡频率,进而得到流量值。
将铂电阻丝的电阻值变化转换成电信号的电路如图3—11所示.
涡街流量计热检测方式电路框图
第二种检测方法以三角柱旋涡发生体为例.其结构可见图3—10所示.在三角柱的两侧装有两片弹性金属薄膜,它们兼为电容器的极扳,里面装有电极板.电极扳与金属膜之间充满了油,借以传递压力.
这样当三角拄下面产生一个旋涡,同时下方的压力就高于上方压力,将三角拄下方的金属膜向里压入,而上方的金属膜就向外弹出,改变了两个电容器各自的电容量.这样,对应于交替产生的升力,两组电容器的电容量就差动地变化.于是,电容量变化与升力变化相对应,也就与旋涡的发生频率相对应.这样,就可由电容量变化频率得到旋涡频率,进而得到流量值.
将电容量变化转换成电信号的电路框图见图3—22所示.涡检测传感器由两组金属膜和电极板组成差动变化电容器,将它放在静电容检测电桥上,由RF振荡回路产生激励.当涡产生时,静电容量发生变化,导致电桥不平衡,将该不平衡势通过RF放大电路放大,经检波后就得到与涡频相对应的信号.将该信号放大并整形成矩形波,由定电流回路作为给定电流脉冲输出.反馈回路用于补偿温度变化引起的电桥不平衡。
电容式涡频检测器电路框图
上一篇:涡街流量计的几个特性
下一篇:变径整流器在流量测量中的应用案例
推荐阅读最新更新时间:2024-03-30 22:35
管道震动对涡街流量计计量的影响
1、涡街流量计仪表系数误差随管道震动加速度的增加而变大,整体抗震性能较差,以管道震动频率100Hz为例,垂直方向抗震加速度为0.05g,水平方向抗震加速度为0.2g。 2、在相同管道震动加速度条件下,无论震动频率如何变化,涡街流量计仪表系数误差随流量增大有减小趋势,小流量下受管道震动影响最大。 3、在相同管道震动加速度条件下,涡街流量计仪表系数误差随管道震动频率的增大而减小。 4、水平管道震动方向较之垂直方向,涡街流量计仪表系数误差更小,抗震性更好。
[测试测量]
涡街流量计主要存在问题及其解决方法
主要存在的问题 主要有:①指示长期不准;②始终无指示;③指示大范围波动,无法读数;④指示不回零;⑤小流量时无指示;⑧大流量时指示还可以,小流量时指示不准;⑦流量变化时指示变化跟不上;⑧仪表K系数无法确定,多处资料均不一致。 分析及解决方法 总结引起这些问题的主要原因,主要涉及到以下方面: 1、选型方面的问题。有些涡街传感器在口径选型上或者在设计选型之后由于工艺条件变动,使得选择大了―个规格,实际选型应选择尽可能小的口径,以提高测量精度,这方面的原因主要同问题①、③、⑥有关。比如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小,实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,
[测试测量]
涡街流量计在化工生产中的应用
引言 涡街流量计主要用于工业管道气体、液体、蒸汽等介质的测量,其特点是压损小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小,仪表参数能长期稳定。我公司使用 涡街流量计 主要用于蒸汽、水、氮气、以及原料的流量计量。 涡街流量计的工作原理 涡街流量计是由直接接触流体的漩涡发生器、检测探头及相应的电子线路等组成的。当流体流经壳体内垂直放置的漩涡发生器时,在其后方两侧交替地产生两列漩涡,这种漩涡被称为卡门漩涡。斯特罗哈尔在卡门涡街理论的基础上提出了卡门漩涡的频率与流体的流速成正比,并给出了频率与流速的关系方程式。由漩涡产生的交变力
[测试测量]
涡街流量计在蒸汽流量测量中的应用
对如今广泛应用的热电联产,蒸汽计量不仅关系到能源的统计和考核,还直接关系到产汽单位和用汽单位的经济效益。目前工业上使用的流量计品种很多,由于涡街流量计结构简单、安装维护方便,已被广泛应用。本文就涡街流量计在蒸汽计量应用中的若干问题进行分析。 1 工作原理 涡街流量计实现流量测量的理论基础是流体力学中著名的卡门涡街流量原理。 如图1所示,在流体中设置旋涡发生体(阻流体),随着流体沿旋涡发生体流动的速度加快,从旋涡发生体两侧交替产生有规律的旋涡,这种旋涡称为卡门旋涡。 由于旋涡之间的相互影响,这些涡列多数是不稳定的,卡门对涡列的稳定性条件进行了研究并得到结论:只有形成相互交替的内旋的两排涡列,且当两旋涡列之间的距离h和同列的两旋
[测试测量]
小广播
热门活动
换一批
更多
最新测试测量文章
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月16日历史上的今天
厂商技术中心