如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为:
δFc = 2ωVδm
因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。
图1 科里奥利力的形成 图2 早期科氏力质量流量计
早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。
在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。
我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。
1. S形测量管质量流量计
如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。
图3 S形质量流量计结构
图4 无流动时位移传感器的输出
图5 振动管受力分析
此科氏力作用在测量管上,就产生了如图5所示的结果,即在中间点上产生一对力,引起测量管轻微的扭曲或变形。而实际上在振荡运动时是两根S管同时所受的振荡,其运动方向相反,受力相等,如图6所示。
图6 作用在测量管上的科氏力
图7 位移传感器的输出
如图8所示,U形管为单、双测量管两种结构,单测量管型工作原理
图8a 单U形管结构
图8b 双U形管结构
图9 U形管工作原理
在双U形测量管结构中,两根测量管的振动方向相反,使得测量管扭曲相位相差180度,如图10所示。相对单测量管型来说,双管型的检测信号有所放大,流通能力也有所提高。
图10 测量管变形示意图
如图11所示,两根J形管以管道为中心,对称分布;安装在J形部分的驱动器使管子以某一固定的频率振动。
图11 J形管质量流量计结构
图12 J形管工作原理
图13 无流动时测量管振动状态
图14 有流动时测量管振动状态
图15 传感器输出信号
如图16所示,流量测量系统由两个相互平行的B形管组成。被测流体经过分流器被均匀送入两根B形测量管中,驱动装置安装在两管之间的中心位置,以某一稳定的谐波频率驱动测量管振动。在测量管产生向外运动时,如图17a所示,直管部分被相互推离开,在驱动器的作用下回路L1\'和L1\'\'相互靠近,同样回路L2\'和L2\'\'也相互靠近。由于每个回路都由一端固定在流量计主体上,旋转运动在端区被抑制因而集中在节点附近。
图16 B形管质量流量计结构
图17 B形管工作时的受力状态
通过在端面两回路之间合理的安装传感器,这些由科氏力引入的运动就可用来精确测定流体的质量流量。
5. 单直管形质量流量计
这种流量计的结构如图18所示,测量系统由一两端固定(法兰)的直管及其上的振动驱动器组成。
图18 单直管质量流量计结构
图19 单直管质量流量计工作原理
6. 双直管形质量流量计
图20 双直管质量流量计结构
图20 双直管质量流量计结构[page]
图21 双直管测量原理
这种流量计的结构如图22所示,驱动器放在直管部分的中间位置,当管中流体以一定速度流动时,由于驱动器的振动作用,使管子分开或靠近。
图22 Ω形测量管质量流量计结构
图23Ω形管质量流量计测量原理
这种流量计有一对平行的带有短直管的螺旋管组成,如图24所示。在管子的中间位置D装有驱动器,使两根测量管受到周期性的相反的振动,在椭圆螺旋管的两端,与中间点D等距离位置上,设置两个传感器,测量这两点的管子间相对运动速度,这两个相对运动速度的相位差与流过测量管中的流体质量流量成正比。
图24 双环形质量流量计
三、 质量流量计结构特性
在一个测量系统中,流体质点作用在测量管上的科氏力是很小的,这给精确的测量带来很大的困难。为使测量管产生足够强的信号,就应加大科氏力对测量管的作用或在同样的科氏力的作用下增大测量管的变形。ω从原理上讲Fc=2ωVM,在被测流体一定时,只有加大ω或V,才能提高Fc。实际中ω的增加,在仪表上就需要提高振动频率和振动的振幅。振动频率的提高,严重地影响测量管的寿命,而振幅的提高就需提供较大的动力。V的增加就是增加流速,这样即增加了测量管上的静压,也增大流量计对整个系统的压力损失。这些对流量计本身和整个系统都是不利的。
另一方面从结构设计上,就要考虑提高科氏力作用在振动管上的效率及提高传感器的检测能力,对后者性能的提高在此不讨论。要想提高科氏力作用在测量管上的效率,必须在结构形状上提高测量管整体的系统弹性,减少钢性,选用弹性好、性能稳定的材料,并准确选择系统的振荡频率。以达到同样的科氏力作用下,测量管的变形量增加。一般来说,测量管的管壁越薄,长度越长,结构形状的系统弹性越好,作用在管上的科氏力就越明显。这样可使测量管的变形加大,信噪比增加,还可减少外界带来的干扰。测量管上所受的应力不要过于集中在一点上,以免造成机械疲劳。应力作用的形式不同,也对管子的疲劳和测量灵敏度造成一定的影响。对于不同的结构,由于其设计思路不同,各有特色,但也存在着一些问题,每一种形式均不可能达到尽善尽美。针对这些问题,制造厂商也不断地对其产品进行改善,以提高其产品的性能,增强其竞争能力。下面就具体的结构对性能的影响进行简单分析。
1. 测量管的形状:
测量系统弹性的增加,增大了作用于振动管系统的科氏力的效应,但也增大外界机械噪声的干扰和仪表体积。测量管应尽量减少急剧弯曲,最大可能的增大测量管内径,这样可以减少压力损失。双测量管型的信噪比得到增加,流通能力也增加,别普遍采用。
2. 管壁
壁厚增加使管子更具有刚性,也增加了流动时管子的固定质量,减少了流体中夹杂气体时,由于其分布的不均匀引起比重变化对管子振动的影响,同时提高测量管耐压、耐磨性,但会降低系统弹性,影响测量的灵敏性。
3. 制造和安装
测量管的形状在制作过程应保证其对称性,在双测量管结构中应保证两根管的一致性,传感器的定位要准确,以减少测量中由于密度或粘度变化对测量结果的影响。流量质量分配的不稳定性,给测量结果的准确性带来影响。
从原理上讲,测量管所受科氏力的大小只与流体的质量流量有关,与流体密度、粘度无关。但密度的变化会带来附加的惯性力;而粘度的变化时测量管的内壁附着层不同,产生不同的边界层效应。结果引起测量管的质量分配不稳定,对测量结果的准确度带来影响。(end)
上一篇:节流式流量计
下一篇:热量表的热量计量原理及计算
推荐阅读最新更新时间:2024-03-30 22:39