应用PLD实现科氏质量流量计的数字部分设计

发布者:自在逍遥最新更新时间:2006-08-10 来源: 今日电子关键字:流体  相位  流量计 手机看文章 扫描二维码
随时随地手机看文章

引言

  科里奥利质量流量计(Corioils Mass Flowmeter,简称CMF)是一种利用流体在振动管内产生与质量流量成正比的科氏力为原理所制成的一种直接式质量流量仪表。当前,基于此原理已开发研制了多种科氏流量计并得到广泛应用。但是,它们普遍存在精度低、体积大、功耗大等问题。我们利用PLD器件开发研制了新一代U形双管式科氏质量流量计。它可以侦测流体的流速、密度、流量、温度等指标,与现在普遍使用的科氏流量计相比具有体积小、功耗低、功能强、精度高、适应性强等特点,具有较大的推广价值。

  本文主要这种新型科氏质量流量计的系统工作原理,数字系统的设计、实现及关键技术,并给出了实际应用结果。

系统原理

  图1 为U形检测管受力模型。两根检测管在电磁激励器的激励下,以其固有频率振动,其振动相位相反。当流体通过两根检测管时,由于振动效应而产生科氏力作用于两检测管,而使U形管发生扭转,其扭转程序与管内瞬时质量流量成正比。位于检测管的进流侧和出流侧的两个电磁检测器,可检测出两路频率相同,但有相位差的振动信号。其相位差同瞬时流量成正比。振动信号周期与流体密度密切相关,流体密度愈大,振动周期愈大。因此通过对这两路信号的相位差及周期进行处理,可以得到流体的流速及密度。此外通过一个温度传感器,可获得流体的温度。

图一 U形检测管受力模型

  将由检测管所获得的两路信号以及温度信号经数字化后进行处理,便得到流体密度、流速、温度及累计流量等数据。利用PLD器件,我们实现了信号提取、处理、存储、显示以及差错控制、数据传输、数据通信等功能,与现有的具有相同功能的科氏流量计相比大大减小了硬件规模。

数字部分系统设计

  数字系统实现模块图见图2。按所实现的功能,可将系统划分为几个大单元:数据采集单元、数据处理单元、数据传输单元、意外保护单元以及控制单元。其中,数据采集单元又可细分为数字化采样和帧编码;数据处理单元可细分为初步计算、零点校正和温度补偿。

图二 数字系统实现模块图

1. 数据采集单元

  原始的相位差、周期、温度等信号需要经过数字化后才可进行进一步处理。由检测管产生的两路有相位差的正弦信号通过模拟部分的处理生成两路同周期、有相位差的方波信号,连同温度传感器产生的温度信号送至数据采集单元。在这里,它们被数字化采样,而后进行帧编码再存储于FIFO中。

2. 数据处理单元

  数据处理单元主要功能是通过对相位差、周期、温度等数据的处理以获得流体的瞬时流速、密度以及累计流量等数据。利用通过线性拟合所得到的相位差与瞬时流量以及周期与流体密度的关系式,可以得到初步的流速及密度值。但由于存在零流量相位差以及温度对流体质量流量的影响,所以必须对初步值进行零点校正与温度补偿,从而得到流体流速与密度值。通过对流体流速及累计时间的统计可以测量质量流量值。

3. 控制单元

  控制单元为系统的控制核心,控制整个数字部分的时序,使各部分稳定正常工作。其完成的控制主要有:中断控制与复用、数据存储中的时分复用、读写控制、数据传输控制以及产生系统中各芯片的主要使能信号。比如,系统为响应外部功能键而对单片机中断的复用;对FIFO的读写时序与数据线上有效数据的时序配合;数据输出与对外通信的时序逻辑,这些功能均在PLD中实现。

4. 数据传输单元

  数据传输单元主要实现本系统与PC机的串行通信。一方面,它将信号处理单元所得到的流速、密度、流量等数据传输至PC机进行进一步的高级处理;另一方面,它将PC机所发出的控制指令传送至控制单元以对系统工作进行控制。

5. 意外保护单元

  这里所说的意外主要是指在实际环境中发生的意外掉电的情况。特别是累计流量值,如果不加以意外保护则无法连续统计因而达不到监测效果。意外保护单元在意外发生时对数据现场进行保护,并在重新来电时恢复现场。

关键技术

  超大规模的可编程逻辑器件PLD是80年代出现的新技术,它具有反复可编程的特点,即只要改变器件的配置数据就可以改变器件的逻辑功能,并且一块芯片可多次重复使用。这给系统硬件设计带来极大方便,大大减少了开发成本。在本系统中,数据采集单元以及系统控制核心都由PLD实现。

图3 电路原理图
  首先通过逻辑功能的分类细化,将整个需在PLD中实现的系统分解为多个有确定输入输出的小模块。再通过图形或文本的输入方式,将各小模块的逻辑功能实现。最后加以组合实现系统功能。然后,通过软件仿真,对设计加以验证,这主要是通过对仿真产生的波形时序图的检验完成的。如果仿真不正确,则需对设计进行修改后再进行验证;如仿真正确则对器件编程,将逻辑功能实现于EPLD器件中。图3为数据采集与输出部分的电路原理图,图4为仿真时序图。

图4 仿真时序图
  在数据采集单元中,以最高40MHz的采样频率对相位差等信号进行数字化,使得相位差的测量精度达到0.025μs,大大高于同类型的质量流量仪表。利用PLD集成度高的特点,直接在PLD中实现数据的帧编码及时分输出。以PLD为中心模块的控制核心,一方面大大减小了硬件体积与功耗,另一方面避免了采用分立元件所带来的电路延时等问题,大大提高了系统的稳定性。此外,系统的可编程(ISP)技术的出现使设计者通过一根下载电缆就可以方便地对安放于印制板上的芯片中的配置数据进行修改,以改变硬件功能,从而大大简化了操作,对器件的功能设计及修改更加方便。

实际应用结果

  在实际应用中,首先通过实际测量标定,对相位差与流体流速以及周期与流体密度运用最小二乘法进行线性拟合以得到它们之间的关系式作为计算质量流量的数学依据。实际流量值与计算值存在对应关系。以累计时间为30秒对流量值进行标定,并与仪器测量值进行比较,得到其对应关系如图5所示。由此得到校正关系式为:

y=2.3952x+24.0577

  通过此关系式对测量值校正并应用于实际测量中,获得实际流量与测量流量及其相对误差(见表1)。如表1所示,其相对误差不高于1.2%,与同类型仪表相比,精度有了很大提高。

结束语

  本仪器具有实时测量流体流速、密度、流量的功能。在用于石油工业的油井流量测量时,测量精度达到1.2%。在本仪器的数字部分中,使用PLD器件,大大提高了系统的集成度,减小了系统硬件体积,降低了系统功耗,也便于仪器调试以及以后功能的改进。由于集成度的提高,使系统工作更加稳定。

  实验和现场使用结果表明,该仪器无论在精度、功耗、规模还是稳定性等方面均优于以前的同类仪器。

关键字:流体  相位  流量计 引用地址:应用PLD实现科氏质量流量计的数字部分设计

上一篇:基于C8051F020的大灯仪自动定位系统
下一篇:线圈匝间短路测试仪设计

推荐阅读最新更新时间:2024-05-13 18:13

工业电磁流量计模拟前端电路方案
电磁流量计是20世纪50~60年代随着电子技术的发展而兴起的新型流量测量仪表,由于其无阻流件等特点,在测量领域得到广泛应用。持续的技术进步要求不断提高解决方案的集成度,技术型授权代理商Excelpoint世健的工程师Nathan Xiao借助ADI的放大器、模数转换器,进行了可实现高分辨率、低噪声的工业电磁流量计模拟前端电路的实测。 电磁流量计工作原理 电磁流量计的工作原理基于法拉第电磁感应定律。根据法拉第定律,当导电流体流经传感器的磁场时,电极之间就会产生与体积流量成正比的电动势,其方向与流向和磁场垂直。电动势幅度可表示为:E = kBDv 其中,V表示导电流体的运动速度;B表示磁场强度;D 为测量管的内径;E表示电极两端测
[测试测量]
工业电磁<font color='red'>流量计</font>模拟前端电路方案
旋进旋涡流量计的原理
旋进旋涡流量计组成如图1 所示。当沿着轴向流动的流体进入流量传感器入口时,旋涡发生体叶片强迫流体进行旋转运动,于是在旋涡发生体中心产生旋涡流。旋涡流在文丘里管中旋进,到达收缩段突然节流使旋涡流加速,当旋涡流进入扩散段后,因回流的作用强迫进行螺旋状进动。此时旋涡流的旋转频率和流体的流速成正比。压电式传感器检测到微弱电信号通过前置放大器等处理就可以得到我们需要的流量信号。
[模拟电子]
旋进旋涡<font color='red'>流量计</font>的原理
氧化铝行业中电磁流量计的实际应用案例分析
电磁流量计 的适用范围很广,随着近来年研发技术得到突破性发展,低频矩形波、双频矩形波励磁技术和微处理器技术的应用于产品研发,带来了电磁流量计的测量单元和数据处理单元的性能,无论是电磁流量计抗干扰能力还是其测量精度得到大幅度的提升,使得电磁流量计的生命力更加旺盛,目前在国内的绝大部分重工业和轻工业生产企业都可以见到它的身影,电磁流量计是依据法拉弟电磁感应定律制成。用来测量电导率大于5 s/cm的导电液体的体积流量,特别适合各种高腐蚀性介质和固液两相难测量、高要求场所,如工业污水、纸浆、泥浆、矿浆等。随着非满管电磁流量计和无电极流量计(用于低电导率液体,在衬里有绝缘层的情况下仍能工作)的问世,电磁流量计的应用领域进一步扩展。 一、
[测试测量]
氧化铝行业中电磁<font color='red'>流量计</font>的实际应用案例分析
涡轮流量计红外线二氧化碳分析仪用途及主要特点
  一:涡轮流量计用途和使用范围   二氧化碳分析仪主要用于环保,卫生防疫系统监测公共场空气中的CO2浓度,也可用于环保,人防。快速准确地对宾馆,商场,医院,影剧院等公共场所中的CO2浓度进行测定   本仪器为国内先进的交直流供电便携式红外线CO2分析器,直流用镍镉电池供电,机内设有充电线路。仪器光学部分结构先进,电路部分全部采用进口大规模集成电路。体积小,可靠性高,预热时间短,可使用户工作效率大大提高。   二:主要特点:   (1) 线性化输出,数字显示直读浓度。   (2) 内置泵、主动式采样,连续测量。   (3) 交直流两用、操作简便。   (4) 符合国家 GB/T18204.24-2000标准   (
[测试测量]
标准孔板流量计测量天然气计量附加误差分析
标准孔板流量计的设计安装要求及气质要求比较苛刻,在实际工况条件下,因很难符合因 GC/T214462008 《用标准孔板流量计测量天然气流量》国家标准的要求,因此必会产生流量计计量附加误差。本文结合现场实际情况,对产生计量附加误差的原因进行分析及解决方法进行探讨。 一、孔板流量计测量原理 当流体流经管道中的孔板时,流束将在孔板处形成局部收缩,流速增加、静压力降低,在孔板前后产生微小的静压力差(称为差压)。流体的流速增快,孔板前后产生的差压相应增大,从而可以通过测量差压来间接测量天然气流量的大小。 二、产生计量附加误差的原因分析 1.上下游直管段长度不够,弯头过多 直管段长度不够,气流得不到充分发展,将造成计量结果的较大误差。 GC
[测试测量]
V锥流量计的优点与缺点
一、V锥流量计的优点: 1、量程比宽 V 锥的zui早生产厂McCrometer公司开展了一系列测试研究工作, 得出结论: V 锥和孔板比较, V 锥的信噪比要小的多。由于信噪比小, V 锥在小流量测量时, 即使测量的差压在较小的工况下也可以地进行测量。从而不必像孔板那样, 需要通过增大变送器的阻尼来改善信号噪声的影响。正因为此, V 锥的量程比远大于孔板的量程比。印度理工学院的S N S ingh教授分别使用油和水在不同的雷诺数下做了实验, 得出结论: 在一定的测量范围内, V 锥的流出系数几乎与雷诺数无关。笔者也曾参与了数百台V 锥流量计的标定工作, 从数据中可以看出, 一般在1. 0精度范围内, 使用单台差压变送器,
[测试测量]
V锥<font color='red'>流量计</font>的优点与缺点
涡轮流量计有哪些安装要求
对于防爆型产品的要求:为了仪表安全正常使用,应复核防爆型流量计的使用环境是否与用户防爆要求规定相符,且安装使用过程中,应严格遵守国家防爆型产品使用要求,用户不得自行更改防爆系统的连接方式,不得随意打开仪表。选型在规定的流量范围内,防止超速运行,以保证获得理想准确度和保证正常使用寿命。安装流量计前应清理管道内杂物:碎片、焊渣、石块、粉尘等推荐在上游安装5微米筛孔的过滤器用于阻挡液滴和沙粒。流量计投运时应缓慢地先开启前阀门,后开启后阀门,防止瞬间气流冲击而损害涡轮。加润滑油应按告示牌操作,加油的次数依气质洁净程度而定,通常每年2-3次。由于试压、吹扫管道或排气造成涡轮超速运转,以及涡轮在反向流中运转都会可能使流量计损坏。流量计运行时不
[测试测量]
涡轮<font color='red'>流量计</font>有哪些安装要求
电磁流量计的基本原理
(一)测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B, L,u三者互相垂直,则 e=Blu 与此相仿.在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极(图3—17)则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势: e=BD u 式中, u 为管道截面上的平均流速.由此可得管道的体积流量为: (3) 由上式可见,体积流量
[测试测量]
小广播
热门活动
换一批
更多
最新应用文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved