涡街流量计的应用

发布者:春林初盛最新更新时间:2013-12-04 来源: 21ic关键字:涡街流量计  流量系数  误差 手机看文章 扫描二维码
随时随地手机看文章
引言

涡街流量计作为一种新型仪表,在流量测量中应用广泛,但在安装中存在不少的问题,本文就安装中应注意的几个问题进行阐述,以便更好地安装涡街流量计。同时,涡街流量计在现场实际使用中会产生不同程度的误差。本文也对其在流量测量中的误差产生原因进行了分析,提出处理方法,以提高其测量精度。

1 涡街流量计的安装

了解清楚仪表的结构、使用环境、安装要求等,严格按照安装手册的要求进行安装。在已投产的设备上安装时还应注意安全措施是否完备,特别是涉及高温、高压介质的。

1.1 安装前一般要求

1)尽可能装在振动和冲击小的场所,如测量到管路中有振动,则应采取加固管道等减振措施。2)若流量计受到生产设备的热辐射较强,则应采取隔热和通风措施。3)流量计安装地点周围应有充裕的空间,以便安装和维护。4)流量计可垂直、水平或倾斜安装。测量液体时,测量点必须充满液体,垂直安装时,液体流向必须自下而上。5)一般情况下,把流量计安装在阀门的下游。6)应保证流量计前后有足够长度的直管段。

newmaker.com
图1 涡街流量计对上、下游直管段长度的要求

1.2 仪表安装中应注意的问题

1)仪表安装时一定要注意,不能搞错方向,要按照仪表随机资料的要求来确定安装方向。2)原则上仪表要竖直向上安装在水平管路上。如果确实因管路布置和安装空间的限制,不能竖直向上安装,则部分仪表也可水平安装。3)仪表的上游与下游要有足够长的直管段。一般地,仪表的上游与下游直管段长度要求如图1所示。如果不能满足要求,则可能使测量精度降低甚至仪表根本无法工作。4)某些情况下,需要对被测流体进行温度、压力补偿。5)对某些液体介质通过仪表时由于压力降低造成的汽化现象要予以充分的注意。6)传感器与管道的连接如图2所示。在与管道连接时要注意以下问题:a.上、下游配管内径D与传感器内径D\'相同,其差异满足下述条件:0.95D≤D\'≤1.1D。b.配管应与传感器同心,同轴度应小于0.05D\'。c.为防止泄漏,安装仪表时要使用密封垫。d.管道安装法兰时的焊渣一定要清除干净,必须保证仪表两侧管道内部光洁流畅。e.如需断流检查与清洗传感器,应设置旁通管道如图3所示。7)减小振动对涡街流量计的影响。8)成套安装,包括前后直管段,流动调整器等是保证获得高精确度测量的一个措施。9)电气安装应注意传感器与转换器之间采用屏蔽电缆或低噪声电缆连接,其距离不应超过使用说明书的规定。

newmaker.com

2 涡街流量计的工作原理

涡街流量计是应用流体振荡原理来测量流量的,流体在管道中经过涡街流量变送器时,涡街流量变送器中设置有旋涡发生体(阻流体),在流体从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街。旋涡列在旋涡发生体下游非对称地排列。设旋涡的发生频率为f,被测介质来流的平均速度为U,旋涡发生体迎面宽度为d,表体通径为D,根据卡曼涡街原理,有如下关系式:

newmaker.com

其中,U1为旋涡发生体两侧平均流速,m/s;Sr为斯特劳哈尔数;m为旋涡发生体两侧弓形面积与管道横截面面积之比:m=1-newmaker.com。 [page]

管道内体积流量qv为:

newmaker.com

其中,K为流量计的仪表系数。

K除与旋涡发生体、管道的几何尺寸有关外,还与斯特劳哈尔数有关。如图4所示为圆柱状旋涡发生体的斯特劳哈尔数与管道雷诺数的关系图。由图4可见,在ReD=2×104~7×106范围内,Sr为常数,这是仪表正常工作范围。当测量气体流量时,涡街流量计的流量计算式为:

newmaker.com

其中,qn,qv分别为标准状态下(0℃或20℃,101.325kPa)和工况下的体积流量,m3/h;pn,p分别为标准状态下和工况下的绝对压力,Pa;Tn,T分别为标准状态下和工况下的热力学温度,K;Zn,Z分别为标准状态下和工况下气体压缩系数。

newmaker.com
图4 斯特劳哈尔数与雷诺数关系曲线

可见,仪表系数在一定雷诺数范围内仅与旋涡发生体及管道的形状尺寸等有关。由式(2)和式(4)可知,通过测量旋涡频率就可以计算出流过涡街流量计的流量。

3 涡街流量计误差生成的原因及处理

3.1 雷诺数的影响

1)雷诺数的影响。由涡街流量计的工作原理及图4的斯特劳哈尔数与雷诺数关系曲线我们可以知道,在雷诺数为2×104~7×106范围内,是仪表正常工作范围。在雷诺数为5×103~2×104范围虽然也在仪表的工作范围内,但因为斯特劳哈尔数增大,会产生测量误差,流量系数需经校正后才能保证流量测量精确度。

2)雷诺数影响的校正。雷诺数影响的校正一般有两种方法。一种是在流量二次表中完成,适用于涡街流量计本身无校正能力的测量系统。另一种是在涡街流量传感器(变送器)中实现,适用于涡街流量计本身有校正能力的测量系统。

3.2 流体温度变化的影响

1)流体温度变化的影响。由涡街流量计的工作原理和式(3)我们可以看出,涡街流量计流量系数K受流体温度的影响由两部分组成:a.由发生体宽度d变化引起;b.由管道内径D变化引起。

从式(1)中可以看出,f与d成反比,K与D2成反比,由于实际中使用的流体温度与设计时的流体温度有较大的差异,由此引入的误差是可观的。2)流体温度变化影响的校正。流体温度变化影响的校正方法是按照流体的实际温度重新计算流量系数。

3.3 发生体迎流面堆积的影响

1)发生体迎流面堆积产生的影响。在被测流体中如果存在着粘性颗粒或夹杂较多的纤维状物质,则会逐渐堆积在旋涡发生体迎流面上,使其几何形状和尺寸发生变化,因而流量系数也相应变化,产生误差。

2)发生体迎流面堆积的处理。发生体迎流面堆积产生的影响目前无好的校正方法。在必要的情况下,可以通过定期更换发生体的办法解决。

3.4 发生体锐缘磨损的影响

1)发生体锐缘磨损产生的影响。涡街流量计旋涡发生体的迎流面如果被测流体中含有固形物,则锐缘很容易被磨损而变成圆弧,会引起流量系数K的变化。2)发生体锐缘磨损的处理。发生体锐缘磨损后应对仪表的流量系数重新标定,当磨损严重,流量系数变化太大时,应考虑更换发生体(选择耐磨性能优良的材质制造发生体,是根本的、积极的办法)。

3.5 管道内径引入的误差

1)管道内径引入的误差分析。正常情况与涡街流量计连接的管道,其内径与它测量管内径并不完全一致。当管道内径等于或略大于涡街流量计测量管内径时,流量系数正常。反之,由于流体流过截面积突变的管段时会产生二次流,因此流量示值会出现明显的波动,产生误差。

2)管道内径引入的误差的修正。当管道内径小于测量管内径(3%)时,因流通截面积突变引起流速变化可能产生附加测量误差。这时,可通过修正流量系数K\'来补偿,K\'=FD×K=K×(D2/D1)2,其修正系数FD的表达式为:FD=(D2/D1)2。其中,D1为测量管实际内径;D2为管道实际内径.

4 结语

涡街流量计的安装不当会造成无输出信号、伪输出、间断或不稳定输出、不准确或非线性输出、非重复输出等多方面的问题。但是,只要我们认真注意仪表安装中的注意事项,就一定能够高质量地完成涡街流量计的安装工作。由于涡街流量计种类繁多,各种涡街流量计在流量测量中的误差也不尽相同。只要我们在实际工作中深入现场,仔细观察,仔细分析,就可以发现问题并进行针对性的处理,从而确保流量的正确测量。

参考文献:
[1]乐嘉谦.仪表工手册[M].第2版.北京:化学工业出版社,2004.
[2]池兆明.流量仪表系数K及其影响因素[J].自动化仪表,1998(3):54-56.
[3]纪纲.流量测量仪表应用技巧[M].北京:化学工业出版社,2003.(end)
关键字:涡街流量计  流量系数  误差 引用地址:涡街流量计的应用

上一篇:弯管流量计的实用分析
下一篇:油田中测量饱和蒸汽质量流量计的发展

推荐阅读最新更新时间:2024-03-30 22:41

流量计测量蒸汽直管道长度不够产生现象
涡街流量计的优点在于可以测量液体也可以测量气体,是通常介质流量流过涡街发生体产生频率信号,再由线路板将频率信号转换成我们所看到的流量数值.现场管道通常都会产生振动,而振动会对涡街产生频率信号,使涡街流量计误以为产生了流量,涡街测量液体时由于产生的频率较低,所以管道振动对它的影响是比较大的。最终导致测量精度差。 涡街流量计在测量气体时由于产生频率信号较高,这时管道就算有振动时,对的影响不大,我们可以利用涡街线路中的小信号切除功能将其切除,也可采用对管道进行加支撑的方法来防止有害频率信号的产生。 涡街流量计测量蒸汽直管道长度不够产生现象,造成流量计量数值变小,这就属于现场安装问题,目前没有什么好的解决办法,只有保证直管段的
[测试测量]
温度变化对零件测量误差的影响
摘 要:本文以高压电气产品零件屏蔽罩为例,从理论和实际两方面计算、分析、论证了温度变化对线膨胀系数大的金属零件的测量误差影响程度,及温度变化和零件测量误差两者的关系,从而对检查员在实际检查中采取有效措施避免温度变化对测量结果的影响,保证测量结果正确性起到指导作用;另外可对设计人员在产品设计时根据产品安装环境对线膨胀系数大的金属零件尺寸公差做相应调整,保证产品可靠安全运行提供参考依据。 1 引言 在实际机械零件检测中,产生测量误差的原因很多,主要有因测量方法不完善引起的误差、测量器具本身引起的误差、主观因素引起的误差、客观因素引起的误差等。本文主要分析了温度变化对线膨胀系数大的金属零件引起的测量误差,并给出了理论计算和实际试验的结果
[测试测量]
温度变化对零件测量<font color='red'>误差</font>的影响
单片机定时器的应用与误差纠正
1 前言    定时器是MCS-51单片机非常重要的组成部分,由于其应用与单片机的其他硬件相关,存在着一定的复杂性 。而定时器是单片机应用中解决某类复杂问题的最有为效的方法,应用非常广泛。随着定时要求的提高,在定时处理过程中所带来的误差需要校正 ,本文就MCS-51单片机的使用方法与误差校正方法进行了讨论,并给出通用算法与程序。 2 定时器工作方式与方式设置    MCS-51单片机有两路独立的定时器,每路定时器有4种工作方式(0~3),方式0是13位计数结构,计数器由TH全部8位与TL的低5位构成;方式1是16位计数结构,计数器由TH与TL全部8位共16位组成;方式2是8位计数结构方式,计数器由TL8位组成,与其他方式不同
[应用]
政法机关迎人工智能:机器人协助克服主观因素误差
“您可以拨打12348,这是法律咨询专用电话哦。” 近日,智能机器人“小艾”现身由法制日报社主办的2017全国政法信息技术装备展,引来众多参观者驻足,上面的对话就发生在一位参观者和“小艾”之间。 “法律咨询电话是多少?” 《法制日报》记者今天采访北京、江苏、山西等地基层政法机关了解到,随着人工智能不断向前发展,目前,大量智能机器人已走进政法机关,或解答法律问题、或协助执法办案、或辅助量刑审判,有效提升执法办案效率,减轻一线人员工作压力,逐渐成为政法工作的“好帮手”。 智能机器人走进政法圈 据了解,“小艾”是一款能够提供智能化引导分流、业务咨询、政务办理、案件管理、普法宣传、娱乐互动等多种服务的机器人。 “小艾”研发企业的相关
[机器人]
基于GPS的高精度无误差倒计时牌的设计
1 引言 GPS是Global Positioning System的简称,是利用导航卫星进行测时和测距的全球定位系统。它具有精度高、全天候和全球覆盖能力。将GPS应用于时钟倒计时系统中能实现高精度时间显示功能。基于GPS的高精度、倒计时牌是卫星测时技术、计算机技术及通信技术三者的有机结合。从功能模块上看,整个系统分为GPS测时接收系统和时钟显示系统。它主要完成以下功能: 定时接收GPS卫星发送的数据并进行识别和缓存; 对GPS测时数据进行格式转换,以使编码格式适于接收; 在给定时间内刷新DS12C887型时钟的时间; 读DS12C887时间,进行倒计时换算并显示。 2 硬件设计 基于GPS的高精度倒计时牌的硬件结构较为简单
[汽车电子]
智能流量计检测旋涡信号的方式有哪些
1、用设置在旋涡发生体内的检测元件直接检测发生体两侧差压; 2、旋涡发生体上开设导压孔,在导压孔中安装检测元件检测发生体两侧差压; 3、检测旋涡发生体周围交变环流; 4、检测旋涡发生体背面交变差压; 5、检测智能涡街流量计尾流中旋涡列。 根据这五种检测方式,智能涡街流量计采用不同的检测技术(热敏、超声、应力、应变、电容、电磁、光电、光纤等)
[测试测量]
智能<font color='red'>涡</font><font color='red'>街</font><font color='red'>流量计</font>检测旋涡信号的方式有哪些
6自由度机器人关节间隙误差分析及仿真
引言 深圳市众为兴数控技术有限公司自主研发设计的mr601机器人,是一款集工业教学应用于一体的min i型6自由度机器人,如图1所示,对应连杆坐标系见图2。 图1 mr601机器人 图2 机器人坐标系 该机器人采用基于pc的开放式控制系统,控制系统如图3所示。 图3 mr601机器人控制系统架构 控制系统软件采用vc6.0开发,具有点位、空间直线、空间曲线运动功能,可以实现关节坐标编程和空间直角坐标编程,空间直角坐标与关节坐标相互转换。 轨迹试验 现让机器人绘制一正方形,以验证机器人整体性能。 机器人末端固定一黑色油性笔,工作平台上放置一白色带灰色条纹瓷砖,见图4所示,以便于机器人在其上绘图。 图4 机器人轨迹试验图 机器
[嵌入式]
基于GPS的高精度无误差倒计时牌设计
引言 GPS是Global Positioning System的简称,是利用导航卫星进行测时和测距的全球定位系统,它具有精度高、全天候和全球覆盖能力,将GPS应用于时钟倒计时系统能实现高精度时间显示功能,基于GPS的高精度,倒计时牌是卫星测时技术,计算机技术及通信技术三者的有机结合。从功能模块上看,整个系统分为GPS测时接收系统和时钟显示系统,它主要完成以下功能: ◆ 定时接收GPS卫星发送的数据并进行识别和缓存; ◆ 对GPS测时数据进行格式转换,以使编码格式适于接收; ◆ 在给定时间内刷新DS12C887型时钟的时间; ◆ 读DS12C887时间,进行倒计时换算并显示。 硬件设计 基于GPS的高精度倒计时牌的硬件结构
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved