流量仪表在能源监测中的作用与特点

发布者:西周以前的最新更新时间:2014-03-21 来源: ofweek关键字:流量仪表  能源监测  准确度 手机看文章 扫描二维码
随时随地手机看文章
    一、节能降耗已列为“十一五”的重中之重。

  过去十年,我国经济建设发展迅速,GDP每年增长率都在10%以上,但这是以高耗能为代价的,我国每百万美元产值的产品耗能达到1274吨标准煤,为国际水平的2.4倍;美国的2.5倍;欧盟的4.9倍;日本的8.7倍,我国每年耗煤已达14.2亿吨,如“十一五”规划GDP要翻一番,按目前耗能水平,每年需生产近30亿吨标准煤,这个数量无论从资源、生产,还是从环保、安全、运输各方面考虑,都是难以为继的。中央在“十五”期间已提出在能源总耗略增前提下,单位产值耗能应下降15~17%,执行结果却是能源总耗增加了10%;而单位产值耗能不降反上升了7%,真是中央十万火急,地方、企业置若罔闻。如果再不狠抓节能降耗,过大的能耗必将成为制约我国经济进一步发展的瓶颈。“十一五”期间中央将下最大的决心,把节能降耗作为经济建设中的重中之重,在确保GDP翻番的同时,单位产值能耗五年内应下降20%。我国工业能耗占总能源的68%,人民生活耗能仅占11.4%,因此节能的重点应放在工业上,特别是高耗能产业,如电力、冶金、钢铁、石化、建材、运输……。

  二、流量仪表在节能监测中的重要作用

  过去的事实说明了,仅仅是自上而下地宣传节能降耗是远远不够的,必需将节能指标落实到地方与企业的主要领导,且列入政绩,才可能引起重视。而是否达到了指标,则必需采取科学的态变,通过仪表的监测用数字来评估节能的效果。为此,中央责成有关部门制定了国标GB17167-2006,即“用能单位能源计量器具配备和管理通则”并已于2007年1月1日公布实施。GB17167-2006中的五条(4.3.2,4.3.3,4.3.4,4.3.5,4.3.8)为强制条款,核心内容为:凡用能达到一定规模的单位和设备都必需安装能源监测仪表,而且对用能的大小,监测仪表的种类及准确度等级都做了明确的规定。

  在能源监测仪表中,除电能用电表、固态煤用称重仪表外,其他气态、液态能源(如原油、成品油、重油、渣油、天然气、液化气、煤气……)及载能工质(水、蒸汽)都必需采用流量仪表。即使对于固态能源煤,在流程工业连续作业时,也可采用冲板式流量计,或气固二相微波流量计。因此,流量仪表在能源监测仪表中具有举足轻重、无法替代的重要地位。

  三、用于能源监测流量仪表的特点

  影响流量仪表的因素较多,为适应这些要求,流量仪表的类型也多达200种左右,如何合理选用,并非举手之劳。本文限于篇幅,略去一般选型原则,重点谈一下在能源监测中应注意的二个问题:

  1、准确度:在能源监测中,流量仪表的准确应放在重要的位置上,GB17167为此也作了合理、明确的规定。既然要求对节能降耗的效果,进行准确的量化,用数字说明问题,流量仪表则应具有必要的准确度,否则如准确度低,知之渺渺,对节能效果不甚了解,何以正确评估?又如何“对症下药”改进节能措施?当然,也并非越准确越好,准确度高的仪表价格都较昂贵,还是应针对监测对象,实事求是地合理选定,如测油品的仪表准确度应不小于0.5~1级;测气体能源为2~2.5级;测载能工质(水、水蒸汽)也可低至2~2.5级。

  2、永久压损:流量仪表是评估节能降耗的重要工具,而其本身不仅不节能,还将耗能。这是由于当流体流经仪表中阻力件时将产生漩涡,如同机械运动中的摩擦一样,以减小流体压力形式消耗能量。有些仪表如文丘利、超声、电磁等虽无阻力件,流体也会与仪表壁面产生摩擦,产生较小一些的压损。为维持工艺流程正常的运行,必须加大泵(或风机)的动力。这是由于安装流量仪表所引起的附加运行费,这笔费用因仪表结构不同会有较大差异,选择流量仪表进行节能评估,当然应选择那些压损小,耗能、年运行费低一些的仪表,言清行濁,适得其反当然不是人们期望的。

  以下计算了三种流量仪表(孔板、内锥、均速管)在不同管径下的压损,能耗及年运行费(计算略去),从表1所列数据可知,流量仪表因压损所需的年运行费不可忽视,是一个应引起重视的问题!

  3、说明:表1的计算,假设了一些条件,如:流量按平均流速25m/s,介质为空气,温度20℃,压力102kpa,风机效率为0.85,每年工作为365小时,每天工作24小时,电费每千瓦小时0.8元。孔板β取0.62;内锥β取0.7,参数如有变化,耗能及年运行费也有所不同,因此表1的数据只能对三种仪表的耗能,运行费做定性的评估。

  四、几种能源监测流量仪表的比较

  1、节流装置:基于节流产生差压,测差压的平方根可知流量大小。长期以来这类仪表由于可承受恶劣的工况,且已有国际标准作依据,曾占据了流量仪表的60~70%市场,类型多达二、三十种。

  ①经典式:已建立国际、国内标准,以孔板、喷咀、文丘利为代表,其中孔板如表1所示,压损较大,喷咀多用于测蒸汽,压损仅次于孔板(见图1)。当管径大于0.3米时,建议不再选用,文丘利管压损虽较小,但体积庞大,耗费大量高耗能钢材,制造、运输都非易事,选用也应慎重。

    ②内锥:近3~5年内宣传力度很大,被认为是一种压损小、准确度高,几乎不要求直管段的仪表,其压损在不同β下(图1),仅次于孔板,比喷咀略高,并不是节能仪表;其准确度有人做过标定*1,在大管径下(D>300mm);流出系数的分散度约为5%。其主要优点是采取了环形通道,具有整流效果,因而要求直管段长度较其他节流装置小得多,在管径日益增大,现场难以满足流量仪表所需的直管段长度,还是一个应肯定的突出优点。[page]

  ③低压损管(lo-loss)相关资料公布已三十年,类似缩短了的文丘利管,主要特点是永久压损小。

  ④梭式*2:取内锥、低压损管二者之所长,具有环形通道可缩短前直管段长度的优点;又具有lo-loss管节流后压力恢复的功能,为专利产品。

  2、插入式:结构简单,安装方便,价廉,且可不断流装折,但准确度较低,仅适用于大管道流量检测,在能源监测中可用于准确度要求不高的场合。

  ①测点速:通过测管道中一点的流速推算流量的仪表,如双文丘利管;插入式涡街、涡轮、电磁,皮托管。据ISO7145评估,准确度为±3%,如直管段不足30D,准确度将低于±5%*3。

  最近在市场上推出一种类似变形皮托管的测管,最大优点是不易堵塞,在管道上方安放三支,每支需用一个差压变送器,价格较贵。据称按ISO3966设计,但并未达到该标准所要求在横截面上安排20个测点的要求。有关文章对其做了误差分析*4,并未考虑到速度分布不理想时,影响准确度最大的干扰系数γ*5。因此,测量误差将会超出±3%。

  ②测径向多点流速:典型的仪表为均速管,由于测点多,准确度可优于测点速的插入式流量计。通常仅测横截面直径方向上的多点流速,在需提高准确度时,也可插互成900的二支均速管,则更符合ISO3966的测点要求。

  3、无阻力件流量仪表。这类仪表的特点是机械结构简单,管道内无任何阻力件,压损小、准确高,是最有发展潜力的流量仪表,如超声、科氏、电磁、近五年市场年增长率分别达到10.4%、6.9%、2.4%。

  ①电磁:在流量仪表市场中虽居首位,但仅可测电导率大于10-5S/cm的流体,不能测油品及天然气等能源,只能测载能工质水。

  ②科氏:管内虽无阻力件,但要求流体在仪表中流向转1800,因此压损较大,准确度可高达±0.5%以上,管径目前均小于0.25米,可用于贸易核算要求精确计量的场合。

  ③超声:可用于多种流体,准确度可高达±0.5%,压损小,量程比大,国内外已制定相关标准,是最理想的能源监测仪表。目前除价格较贵影响选用外,据用户反映,在现场应用中、抗噪声性能还有待进一步改善。

  五、小结

  1、仪表选型应全面、理性。本文从能源监测的角度出发,强调了流量仪表具有准确度高、永久压损小,价格低廉的几个特点。从上所述,目前还没有十全十美的仪表,有些仪表如孔板、科氏、容积式、虽然压损大,但也有特点,或是有标准可遵循(如孔板)、或是准确较高,当管径不大时,压损的问题也并不突出,不必因噎废食。因此,选型应全面,综合考虑,过分地夸大或贬低某一种仪表都是片面、不可取的。

  2、发展趋势:目前流量仪表有很多类型,处于一种“春秋战国”的状态,但科技在飞速的发展,新型仪表如电磁、超声、科氏,以其结构简单,功能完善,日益受到用户的青睐。经典式(孔板、喷咀、文丘利)或因压损大,要求直管段过长难以满足等缺点,市场发展呈下降趋势,年增长率为-2.3%。新的节流装置也在不断地涌现,所以新型流量仪表取代经典式传统仪表将是一个较漫长的过程,并非一朝一夕之事。

关键字:流量仪表  能源监测  准确度 引用地址:流量仪表在能源监测中的作用与特点

上一篇:检测水质标准不统一 致使水质检测结果遭质疑
下一篇:你能分清涡街旋涡流量计与旋进式旋涡流量计吗?

推荐阅读最新更新时间:2024-03-30 22:44

最大限度提高能量存储电池管理系统中 电池电量监视的准确度和数据完整性
大型电池阵列可以作为备份和连续供电的能量存储系统,这种用法正在得到越来越多的关注,特斯拉汽车公司不久前推出的家用和商用 Powerwall 系统证明了这一点。这类系统中的电池由电网或其他能源连续充电,然后通过 DC/AC 逆变器向用户提供交流 (AC) 电。 用电池作为备份电源并不是新鲜事,目前已经有很多种电池备份电源系统了,例如基本的 120/240Vac 和数百瓦功率的台式 PC 短期备份电源系统,船舶、混合动力汽车或全电动型汽车使用的数千瓦特种车船备份电源系统,电信系统和数据中心使用的电网级数百千瓦备份电源系统 (参见图 1) 等等。尽管电池化学组成和电池技术领域的进步引起了很大的关注,但是对于一个可行和基于电池的备份系
[电源管理]
最大限度提高能量存储电池管理系统中 电池电量监视的<font color='red'>准确度</font>和数据完整性
怎样提高粘度计测量准确度
  一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。   二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。   三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度
[测试测量]
精准型工业系统要求新的数据转换准确度水平
引言 许多工业系统都需要以最高的准确度来测量关键性的参数。实例包括地震监测、能源勘探、气流感测和硅晶圆制造等。在每种场合中,这些系统均拓展了尖端信号处理技术的界限并要求 ppm 的准确度。此类系统的设计高度精细复杂,并内置了宽动态范围传感器、高阶控制环路和最高性能的集成电路组件。 很多精准型工业系统的核心部分都是一个模数转换器 (ADC)。该 ADC 扮演着至关重要的角色,其负责把模拟信号变换为数字信号以进行数字信号处理。ADC 的准确度和性能常常决定了整体系统的准确度和性能。本文将讨论突破性的数据转换性能是怎样实现更高准确度和更低成本的新一代工业系统。 精准型工业系统要求 精准型工业系统需要采用高分辨率 ADC 以
[嵌入式]
Apple Watch计时准确度比iPhone高四倍
    日前, 苹果 公司技术副总裁Kevin Lynch在接受采访时表示,Apple Watch的计时精准度非常高,甚至比iPhone还准确了四倍以上。 (图片来自New York Daily News)   自研发之初,计时精度就是Apple Watch的主要功能之一。通过高速相机,苹果对这款手表进行了逐帧拍摄,比较准确性和延迟的差异。   Kevin Lynch称:“我们校准了世界各地的网络时间服务器。全世界有15个这样的NTP网络时间服务器。这些服务器分布在世界各地,服务器建筑外有GPS天线,当GPS卫星环绕地球运动时,这些服务器可以获得时间信息。”   Kevin Lynch还透露,iPhone和Apple W
[手机便携]
苹果获跌倒检测新专利:提高检测准确度 评估未来12个月内跌倒风险
4 月 18 日消息,苹果首款“跌倒检测”功能专利可追溯到 2018 年公示的 20190103007,后续又获得了至少 5 项相关专利。根据美国商标和专利局(USPTO)上周四公示的专利,苹果公司再次获得了一项“跌倒检测”功能专利。 苹果在报告中表示,在 65 岁以上美国老年群体中,每年有近三分之一报告出现跌倒。从 2007 年到 2016 年,65 岁及以上成年人的死亡率每年增加 3%。 从专利中获悉,苹果利用 iPhone、Apple Watch 等设备上的加速度计、陀螺仪、磁力计、气压计、全球导航卫星系统(GNSS)和全球定位系统(GPS)等传感器,更准确评估用户步行步态的质量和动态平衡(walking stea
[手机便携]
示波器测量准确度问题探讨及高精度示波器的应用
——力科第三届“精品工程”系列网络视频讲座会系列之四 时间:2011年7月26日 10:00 - 12:00 举办网址: http://webcast.ednchina.com/529/Content.aspx 本次研讨会我们将讨论影响示波器测量准确度的一系列因素:半导体器件本身的影响因素如DC增益,偏置,非线性度,频响曲线的线性度,通道之间的匹配,量化误差等; 测试环境特别是探头的因素,如探头的地线,探头的负载效应,探头摆放的位置,地环路的干扰等以及算法本身的影响因素。这些影响因素中,最关键的也是最大的一个影响因素是量化误差。 力科的WaveRunner HRO 6Zi 12位ADC的高精度示波器能够减小量化误差的影响,提供更
[测试测量]
如何比较不确定度(Uncertainty)和准确度(Accuracy)
当你对比不同厂家的频谱仪或接收机技术指标时,会发现有的厂家用不确定度(MeasurementUncertainty),有的厂家用准确度(Amplitude Accuracy),那么这两者有何关系呢?如果展开来讲,这是个很复杂的问题,因为不确定度的计算和评估本来在计量学中就是一个独立的学科,我们这里也不打算如此深入的展开。我们这里意在用一篇短文尽可能简化概念,从实用的角度让非计量行业的工程师更容易理解不确定度和准确度两者之间的关系,以便方便大家比较选择仪器。 首先,从定义来看,准确度是测量结果中系统误差与随机误差的总和,表示测量结果与真值的一致程度。测量不确定度是表征合理的赋予被测量值的分散性与测量结果相联系的参数,具体操作中需
[测试测量]
确保SiC验证测试准确度,有效测量碳化硅功率电子系统中的信号
SiC 正在被应用到功率更高、电压更高的设计中,比如电动汽车(EV) 的马达驱动器、电动汽车快速充电桩、车载和非车载充电器、风能和太阳能逆变器和工控电源。 功率系统设计人员在转向SiC 时,会面临一些问题的挑战: ● 测试设备能否准确地测量 SiC 系统的快速开关动态? ● 怎样才能准确地优化门驱动性能和空转时间? ● 共模瞬态信号是否影响测量准确度? ● 我看到的振铃是真的吗?还是探头响应结果? 对工程师来说,解决这些挑战非常难。还有一点,工程师需要准确地查看所有这些信号,才能及时做出正确的设计决策。提高设计裕量和过度设计,只会推动成本上升,让性能下降。使用适当的测量设备才是解决问题的关键。 时域测量和开
[测试测量]
确保SiC验证测试<font color='red'>准确度</font>,有效测量碳化硅功率电子系统中的信号
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved