欧姆定律对电流精确测量造成的缺憾及解决方案

发布者:脑洞狂想最新更新时间:2014-08-28 来源: eefocus关键字:欧姆定律  电流精确测量  数字万用表  分流器 手机看文章 扫描二维码
随时随地手机看文章

在众多测量工作中,需要对电压和电流进行精确测量,并根据测量结果来计算器件功率及其它电气参数,例如功率效率测试和电池功耗分析等。这些测量往往需要总误差达到甚至低于0.1%的测量精度。但实际过程中,总测量精度会受限于测量过程中的若干个因素的制约,包括分流器、引线、测量环境、以及数字万用表本身。

数字万用表可对电流进行非常精确的测量,但是当电流超过10A时,许多数字万用表内置电流表的量程可能就不够用了。这时人们可能会采用卡钳式电流探头测量电流。这个方法的使用方便,但精度有限,大约0.5%~1%,而且短时间内就会产生漂移,必须经常进行手动归零。因此,要测量几十至上百安培的电流,工程师通常使用分流电阻,构建定制解决方案,利用欧姆定律,通过分流电阻值和测量的压降,计算出电流值。但是这种方法会引入许多误差,必须花费大量精力使用外部手段验证测试结果,但即使这样,也很难确定最终的精度。因此,大电流和动态电流的精确测量,是非常具有挑战性的。

缺陷原因

市场上常见的高精度电阻分流器的标称技术指标可以达到0.5%,甚至有些可低至0.1%的误差。但即便只有0.1%误差的分流器,在未考虑其它可能引入的误差之前,就会让我们难以实现0.1%总测量误差的目标。更为严重的是,由于分流器的阻值会随着温度发生变化,而我们无法调整它的绝对电阻值来校准它,而必须进行更多的表征。同时,必须用高精度的万用表来测量电压和电阻的变化。普通的数字万用表由于分辨率的限制,不能直接用于精确表征毫欧级的分流器。

那么,如何来精确表征一个分流器呢?一种方法是将其与预先表征过的分流器串联,使用程控电源为该串联电路施加电流。使用串联电路中已知特性的分流器来测量电流,再测量需要表征的分流器上的电压,便可计算出这个分流器的电阻。在表征过程中,您必须等待分流器达到热平衡,以获取这个分流器受温度影响而发生的变化值。在一个电流值完成表征后,随即需要按一定的步进提高电流值,再重复这个过程,直到最大的预期电流值,以表征分流器逐渐增加的自热效应。这个过程极其耗时耗力。

有一点必须考虑的是,鉴于分流器的电阻值仅为毫欧级,所以电路引线中的电阻也不容忽视。在使用10m?分流器时,即使引线额外增加仅仅10??电阻,也会导致误差增加0.1%.为了预防引线电阻值加到被表征的分流器电阻值上,从而影响测量结果,应该使用4线Kelvin连接方法。


图1:利用Kelvin 4线连接的分流电阻器。

温度变化引入的误差:

当温度变化时,所有电阻器的值都会发生或多或少的漂移(图2)。这种效应被量化为电阻温度系数(TCR),单位通常为ppm/℃(见公式1)。普通铜线的TCR大约为4000ppm/℃。精密型分流器使用特殊合金进行补偿,将TCR降低到最低水平,可以实现10ppm或更出色的性能。然而,TCR绝不会减小到0,所以您必须计算其效应,特别是在电阻器功耗达到数瓦的时候,以确保环境温度变化或自热导致的温度上升不会损害测量精度。对于25ppm电阻器,温度每上升40℃,误差将增加0.1%.此外,由于电阻随温度而改变,在电流发生变化之后,分流器两端电压的显示值需要很长的时间才能稳定下来,直到分流器达到热平衡。热稳定时间取决于分流器材料的形状、质量和热导率。对于物理尺寸较大的器件,它们可能长达几分钟。由于等待分流器温度稳定需要时间,这将会严重影响测试速度。



图2:分流电阻的热漂移。

数字电压表引入的误差:

虽然高性能数字电压表能够测量微伏级电压,但是在低信号电平时,数字电压表自身的偏置误差是决定分流器系统总体精度的最重要原因。数字电压表的测量误差包括了读数误差和偏置误差。偏置误差是有仪表本身决定的,与选用的量程和温度有关,而与被测量的信号无关,这个值通常在微伏级。因此,这就决定了数字电压表在测量分流器的低电压信号时,存在一个不可小视的误差下限。

热电动势引入的误差:

当电路由两种不同金属构成,而且在不同端存在温度差时,就会发生热电效应,即Seebeck电压。Seebeck电压的大小取决于接触的金属种类及温度差,通常为uW/℃的量级。热电偶就是利用Seebeck热电效应来测量温度。但在使用分流器的电流测量中,Seebeck热电效应会是常见的偏置误差源。要最大限度减小热电效应,必须谨慎选择材料,保持系统的等温状态。因此,您应尽量让分流器测量电路远离可能导致温度变化的热源,例如散热风扇排出的气流,并尽可能降低分流器自身的功耗。连接器的电镀触头、继电器到分流器合金的铜线连接(图3),都可能构成意外的热电偶接点,其温度相关的偏置电压对测量结果会产生不利影响。例如:对于3.33uV/℃的材料,一旦温度变化3℃,就会产生10uV的Seebeck偏置电压,可能导致10 mV的信号测量产生0.1%误差。



图3:自热导致分流器温度上升。

选择分流器

要进行精确的电流测量,首先应使用高品质的电阻。对于普通的电阻,由于引线电阻、较大的TCR、以及非理想的特性,最好不要使用它作为电流测量的分流器。此外,测量大、小电流的要求会相互矛盾,任何一个实际的测试系统可以测量的最大和最小电流值是有限的。[page]

对于大电流,通过将分流器的功耗限制到适当水平,以此确定该分流器的电流测量上限。根据P_D=I^2 R,100A电流通过1m?电阻将消耗10W功率,产生100mV的压降。在10W功耗条件下,TCR可能会导致分流器的电阻值发生非常大的变化,需要使用散热器,或更大体积的器件以限制温度的上升。

分流器上的瞬态压降可能也会限制分流器电流测量的实际上限。在被测件端,实际输入电压等用电源输出电压将减去分流器和导线上的压降。常用的方法是把电源远端感应线跨过分流器,连接到被测件端。这样电源可以提供额外的补偿电压,以稳定被测件端的电压(图4)。然而,如果出现电流的突然变化,分流器仍将导致瞬态电压偏置,?V=?I×R,之后电源才会稳定到新的工作点。分流器瞬态压降与电源固有的瞬态压降相叠加,有可能导致被测件重置或产生其它错误行为。


图4:包括远端感应连接的电源。

 


对于小电流的测量,根据V=I×R,必须使用大分流电阻以使生成的足够高的偏置电压,降低测量误差,提供测量精度。如果测量的电流是变化的,有大电流和小电流,在使用单分流器系统的时候,就可能出现问题。一方面,需要分流器能适用于足够高的电流,需要克服功耗和瞬态响应因素的限制。另一方面,在小电流的测量时又要确保足够的精度,但这时,数字电压表和Seebeck热偏置电压造成的误差将是不可接受的。

您可能想再使用一个额外的分流器和旁路开关,为小电流测量生成较大的、更容易测量的电压信号。然而,将这个额外的分流器切换到电路中进行测量,需要进行大量编程工作,因为它必须与被测件活动导致的电流变化保持同步。在大分流器上,意外的高瞬态电流可能导致电源电压下降,造成被测件中断工作。假定理想的大电流旁通开关可以实现,那么突然增加或减少被测件电流路径中的阻抗,仍有可能导致电源系统的输出瞬变。

替代解决方案

鉴于设计和准确验证分流系统的困难性,我们可以更多来关注一下高性能电源通常内置的、卓越的计量级测量手段。Agilent N7900A电源系列可以测量高达200A的电流,而增益误差不超过0.04%.先进的设计不仅保证了电流和电压测量精度,它们还在极限环境条件下经过测试和标定。此外,N7900A系列还采用了热模型,来实时估计分流元件的温度,并对温度导致的误差进行数字校正。与未进行任何补偿的系统相比,这个过程可改善精度,并极大缩短测试时间。N7900A系列内部还具有无缝切换的高电流和低电流量程,可方便地对高动态电流进行测量,无需使用外部分流器和相关的控制电路。从测量角度来看,量程变化不会对电源输出产生任何干扰,完全是没有间断和毛刺的。

总之,在使用分流器和数字万用表构成的系统中,要实现高精度电流测量,其复杂程度远远超过根据欧姆定律粗略计算的过程。数不胜数的误差源会导致测量的绝对精度远远低于数字万用表的理论性能,同时温度的影响也使可重复性显著降低。考虑到这些误差,对结果进行验证需要投入大量时间、设备和专业技术。

关键字:欧姆定律  电流精确测量  数字万用表  分流器 引用地址:欧姆定律对电流精确测量造成的缺憾及解决方案

上一篇:多传感器空气流量测试系统方案
下一篇:基于虚拟仪器的开关磁阻电机监控系统设计方案

推荐阅读最新更新时间:2024-03-30 22:46

日置最新发售数字万用表DT4211和DT4212
日置(HIOKI)本次新发售数字万用表DT4211和DT4212。新产品面向海外市场,特别是发展中国家。 日置有信心将在海外市场建立自己的品牌作为长中期经济战略。该经济战略致力于实现业务改革,以促进销售全球化。DT4211和DT4212是此战略的重要组成部分,在全球市场范围内努力增加HIOKI品牌渗透力,特别是在中国、东南亚、印度等发展中国家。 高速发展的新兴市场需要参数选择面广且兼备安全和实惠两大特点的测量仪器。DT4211和DT4212具备多功能、安全、低价的特点充分迎合了新兴市场的需求。HIOKI的DT4212具备真有效值测量功能,能够精确的测量畸变电流值,期待能够在有时需要用于供电不足环境里的新兴国家中发挥作用。 从
[测试测量]
Vishay 新款电池分流器实现更高精度和一致的触点位置
eeworld网消息,日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,发布新的Power Metal Strip®电池分流器---WSBS8518...20。该电阻有2个引脚,采用8518外形尺寸,功率达到36W。Vishay Dale WSBS8518...20的阻值低至50µΩ,比霍尔效应检流方案的精度更高,成本更低,同时其引脚在PCB安装过程中起辅助作用,使触点位置保持一致。 今天发布的这颗器件采用专利的加工工艺,实现了50µΩ、100µΩ、125µΩ和250µΩ的极低电阻值。低阻值使电阻能测量出更准确的数据,来判定电池的充电和放电状态,从而帮助设计者满足汽油、柴油、混合
[半导体设计/制造]
高端数字万用表在市电谐波分析中的应用
  前言   随着城市化和工业化的进一步发展,越来越多的电力电子设备在电网中广泛使用,产生了大量的电力谐波注入到电网,这种不受控的电力谐波成为电力系统的一大公害。对市电进行电力谐波分析就可以分析出其附近区域内电网工作状况,从而为电网安全状态提供依据。   由于市电电压在120~380V范围内,峰值电压小于1000V,台式万用表即可方便测量,并且可以反映出大多数设备工作的电压环境。   本文以RIGOL高精度台式万用表DM3068为例,利用DM3068的DCV挡的1000V量程和10kSa/s采样速度对市电信号采集,利用USB接口上传采集的数据,借助C语言和VISA驱动实现对电力信号的全自动采集和存储,再借助C和Matlab的
[测试测量]
高端<font color='red'>数字万用表</font>在市电谐波分析中的应用
数字万用表修理方法与技巧
数字式仪表具有很高的灵敏度和准确度,其应用几乎遍及所有企业。但由于其故障出现呈多因素,且遇到问题的随机性大,没有太多规律可循,修理难度较大。因此,本人将多年工作实际中所积累的一些修理经验整理出来,以供从事本专业的同仁参考。      一、修理方法      寻找故障应先外后里,先易后难,化整为零,重点突破。其方法大致可分为以下几种:      1.感觉法凭借感官直接对故障原因做出判断,通过外观检查,能发现如断线、脱焊、搭线短路、熔丝管断、烧坏元件、机械性损伤、印刷电路上铜箔翘起及断裂等;可以触摸出电池、电阻、晶体管、集成块的温升情况,可参照电路图找出温升异常的原因。另外,用手还可检查元件有否松动、集成电路脚管是否插牢,
[测试测量]
数字万用表的“二极管”档测二极管
用数字万用表的“二极管”档测二极管 将万用表的红表笔接二极管的一极,黑(COM)表笔接另一极。在测得正向压降值小的情况下,红表笔(表内电池的正极)所接的是正极,黑表笔所接是负极。一般,所显 示的二极管正向压降:硅二极管为0.55—0.700V,锗二极管为0.150--0.300V。若显示 “0000”,说明管子已短路;若显示“过载”,说明二极管内部开路或处于反向状态(可对调表笔再测)。
[模拟电子]
吉时利2110型5½位双显示数字万用表(三)
订货信息 2110-100: 5½ USB数字万用表 (100V) 2110-120: 5½ USB数字万用表 (120V) 2110-220: 5½ USB数字万用表 (220V) 2110-240: 5½ USB数字万用表 (240V) 2110-GPIB-100: 5½ USB及GPIB 数字万用表(100V) 2110-GPIB-120: 5½ USB及GPIB 数字万用表(120V) 2110-GPIB-220: 5½ USB及GPIB 数字万用表(220V) 2110-GPIB-240:
[测试测量]
吉时利2110型5½位双显示<font color='red'>数字万用表</font>(三)
数字万用表的应用技巧
在相对来说大电流高电压的模拟电路测量中适用指针表,比如电视机、音响功放。在低电压小电流的数字电路测量中适用数字表,比如手机。不是的,可根据情况选用指针表和数字表。 一、指针表和数字表的选用 1、指针表读取精度较差,但指针摆动的过程比较直观,其摆动速度幅度有时也能比较客观地反映了被测量的大小(比如测电视机数据总线(SDL)在传送数据时的轻微抖动);数字表读数直观,但数字变化的过程看起来很杂乱,不太容易观看。 2、指针表内一般有两块电池,一块低电压的1.5V,一块是高电压的9V或15V,其黑表笔相对红表笔来说是正端。数字表则常用一块6V或9V的电池。在电阻档,指针表的表笔输出电流相对数字表来说要大很多,用R×1Ω档可以使扬声器发出
[测试测量]
<font color='red'>数字万用表</font>的应用技巧
数字万用表如何测量电压
数字万用表 -数字万用表如何测量电压 1、选择所需的挡位与量程 2、将黑表笔插入COM口。将红表笔插入电压输入插口 3、将表笔头跨接在负载或电源两端(并在电路上) 4、察看读数,并确认单位 注:为了正确读出直流电压的极性(±),将红色表笔接电路正极,黑色表笔接负极或电路地。如果用相反的接法,有自动调换极性功能的数字多用表会显示负号来指示负的极性。如果是模拟表,你就要冒损坏表的危险。 注:1/1000V=1mV 1000V=1kV 高压探头可用在电视机、录像机的维修中。可承受40kV的高压。 注意:这些探头不能用在高压同时伴随着高能量的电力方面。因此,这些探头只能在低能方面应用
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved