基于PCI-9846H的死区时间引起的电压波形畸变的研究

发布者:古通闲人最新更新时间:2014-08-28 来源: eefocus关键字:PCI-9846H  死区时间  波形畸变  逆变器  数据采集 手机看文章 扫描二维码
随时随地手机看文章

引言

电机驱动系统是电动汽车的核心部分[1-2].按所使用电机的类型可以分为直流电机驱动系统和交流电机驱动系统[3],而交流电机驱动系统中,感应电机容易被接受,使用较广泛,永磁同步电机由于其本身的高能量密度与高效率,具有比较大的竞争优势,应用范围日益增多。

为了满足整车动力性能要求,电机驱动系统要有较高的动态性能,目前比较成功的控制策略包括:基于稳态模型的变频变压控制(VVVF)、基于动态模型的磁场定向控制(FOC)以及直接转矩控制(Direct Torque Control——DTC)。其中直接转矩控制是在矢量控制基础之上发展起来的,其主要优点是:摒弃了矢量控制中的解耦思想,直接控制电动机的磁链和转矩,并利用定子磁链定向代替了矢量控制中的转子磁链定向,避开了电动机中不易确定的参数(转子电阻等)识别。目前国内外的永磁同步电机的数学模型只是基于中线不接出三相对称绕组条件下,引入转子磁链、定子漏抗、及各绕组的互感而建立的,忽略了轴承及其他杂散损耗以及PWM波等因素对电机的影响,因此基于该电机模型建立的控制策略在电机的低速脉动、高速弱磁、稳定性和输出转矩一致性等方面还存在诸多问题[5].为了能更好的解决直接转矩控制下电机的低速转矩脉动的问题,本文建立了引入逆变器死区时间的电机模型,通过对死区时间的产生和作用机理进行分析,得出引起输出电压波形畸变以及相位变化的关键影响因子,针对仿真结果提出一种减小死区时间引起电压波形畸变的方法,通过应用PCI-9846H、电流传感器、电压传感器、转矩仪、电机及其控制器、测功机等设备完成车用电机试验平台的搭建,上位机通过LABVIEW编写数据采集系统,通过对电压、电流、转矩、转速信息的采集与分析,对本文提出的减小死区时间对输出电压波形畸变的方法进行了验证。

1.逆变器死区时间的研究

1.1逆变器死区时间产生机理

对于永磁同步电机驱动而言,在IGBT正常工作时,上下桥臂是交替互补导通的。在交替过程中必须存在上下桥臂同时关闭的状态,确保在上/下桥臂导通前,对应的互补下/上桥臂可靠关断,这段上下两个桥臂同时关断的时间称为死区时间。针对目前市场上IGBT的调研发现,逆变器死区时间一般为3~7μs[6].在电机工作在一定转速以上时,由于基波电压足够大,死区效应对基波电压影响较小,所以不为人们所重视;但电机工作在低速时,基波电压很小,死区效应对基波电压影响相对较大,死区时间越长,逆变器输出电压的损耗越大,电压波形的畸变程度也会变大,除此之外死区时间还会影响输出电压的相位,使PWM波形不再对称于中心,造成电机损耗增加,效率降低,输出转矩脉动等。图1所示为死区时间产生的机理以及对输出电压的影响,其中V为理想的PWM电压输出波形,Ua-为负母线电压,Ua+为正母线电压,v为误差电压,Ia为输出电流。



图1死区效应

由图1所示,可以发现误差电压具有以下特征[7]:1)在每个开关周期内均存在一个误差电压脉冲;2)每个误差电压脉冲的幅值均为Ud;3)每个误差电压脉冲的宽度均为Td;4)误差电压脉冲的极性与电流极性相反;尽管一个误差电压脉冲不会引起输出电压太大的变化,但是一个周期内总的误差电压引起的电压波形的畸变就比较严重,下面就对半个周期内误差电压对输出电压波形的影响进行分析。

1.2死区时间引起输出电压波形畸变的分析

利用平均电压的概念[8],假设载波频率非常高,不含电流在一个载波周期内过零的情况,则半个周期内误差电压脉冲序列的平均值为:

(1)

式中根据傅里叶级数展开式:

(2)

由于波形关于坐标原点对称,是奇函数,所以式中a0,an都为0.其中

,于是误差电压的傅里叶展开式为:

(3)

基波误差电压为:

(4)

死区时间不仅影响输出电压的幅值,还会影响输出电压的相位,如图2所示:



图2死区时间对输出电压相位的影响

其中,:平均误差电压,:实际输出电流,:理想输出电压,:实际输出电压,φ:实际功率因数角,φ\':理想功率因数角由三角形的余弦定理可得:

(5)

解得:



为了更直观的分析死区时间对输出电压的影响,本文对上述结果进行归一化:(6)

定义电压调制深度M为输出电压峰-峰值和直流母线电压Ud之比,则M=,Ua为理想输出电压,Ua\'为实际输出电压。



图3功率因数角对输出电压的影响

 


图3所示为fc=4kHz,M=0.8时,输出电压随着不同的功率因数角的变化曲线图,可以看出功率因数角越高,死区时间对输出电压的影响越小。当死区时间比较短时,功率因数角的改变对输出电压的影响不大,当Td=7μs时,增大功率因数角可以减小电压波形的畸变,但是增大功率因数角会减小功率因数,影响电机的效率,在功率因数角的设计中需要综合考虑这两方面。



图4三维图

图4所示为实际输出电压有效值占理想输出电压有效值的百分比随电压调制比、死区时间以及载波频率变化的曲线图,本文将公式(6)中死区时间Td和载波频率fc的乘积作为一个影响因子,其范围为0~0.08.当电压调制比较高时,死区时间和载波频率对输出电压的影响不明显,但是当电压调制比较低时,死区时间对输出电压影响就会非常明显。

1.3死区时间对输出电压波形影响的解决方法



图5改进的控制框图

由以上分析可知,当载波频率一定时,死区时间引起电压波形畸变的程度受电压调制比的影响,当电压调制比较低时,死区时间对输出电压波形畸变会相对增大,这也正是引起电动汽车在低速转矩脉动的因素之一。从另一方面来看,提高电压调制比可以在一定程度上抑制波形畸变,图5所示为改进的控制框图,通过转速传感器检测电机的运行状态,当电机低速运行时,减少电池输出的直流母线电压,从而提高电压调制比,来减小死区时间对输出电压的影响,通过上述控制调节电池的输出电压,将电压调制比控制在一个较高的范围,从而减少死区时间引起的电压波形的畸变。

2.基于PCI9846H的数据采集系统设计

2.1硬件设计与实现

2.1.1电压传感器、电流传感器、转矩仪的选型及特性分析

驱动电机系统的工作电压和电流范围比较大,从几十伏(安)到上千伏(安),这就要求电压和电流传感器不仅要有良好的绝缘性,还要将输入信号和输出信号完全隔离,同时,传感器的响应时间也应优先考虑。试验台上驱动电机转速与转矩的测量需要转矩仪有很好的输出信号的稳定性和重复性。结合电机试验的要求,本文从传感器的量程、精度以及动态响应时间方面考虑,分别选择电压传感器CV 3-500,电流传感器LF 505-S,转矩仪F1i S,其特性如表1所示。

 

表1 电压传感器、电流传感器、转矩仪的特性

 

2.1.4 数据采集卡

本论文的研究对数据采集卡提出了很高的要求,由上文可知,死区时间一般为3~7μs,实际中IGBT的开关过程有延时和滞后,以东芝公司的MG25N2S1型25A/1000V IGBT模块为例,其电压上升和下降时间分别为0.3μs和0.6μs,为了能够真实的捕捉死区时间引起的电压波形畸变,工程中用到的采样率通常为信号中最高频率的6-8倍,这就要求数据采集卡的采样率至少要达到10MS/s。

试验平台采用凌华公司生产的PCI-9846H高端数据采集卡,这是一款4通道同步并行采集,每通道采样率高达16MS/s的多功能数据采集卡,该采集卡具有4个同步单端模拟输入和16位的高分辨率A/D转换器,同时PCI-9846H在总谐波失真(THD)、信噪比SNR、无杂散动态范围(SFDR)等方面性能能够满足本文对试验精度的要求。此外,板载512M Byte内存,作为数据暂存空间,可以延长连续采集的时间,其数据传输方式采用DMA的方式,无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场的过程,通过硬件为RAM与I/O设备开辟一条直接传送数据的通路,使CPU的效率大为提高,提高了数据采集的实时性和动态响应特性,该数据采集卡能够满足本文对采样率和精度的研究要求,其主要特性如表2所示。

 

表2 PCI-9846H数据采集卡特性



本文所研究的信号的频率较高,因此需要板卡有足够的带宽满足相应的研究要求。PCI-9846H-3dB-3dB带宽为20MHz,能够满足本文对频谱分析的要求,此外板卡的系统噪声在±1V时仅为5.0LSBRMS,其在±1V时的频谱特性如图6所示。


            图6 ±1V时的FFT

2.1.5 信号调理电路

从传感器得到的信号大多要经过调理才能进入数据采集设备,信号调理功能包括放大、隔离、滤波、激励、线性化等。由于不同传感器有不同的特性,因此,除了这些通用功能,还要根据具体传感器的特性和要求来设计特殊的信号调理功能。[page]

本系统所用的信号调理板主要实现两方面的功能:

(1)实现传感器信号的低通滤波。信号进入计算机前必须要经过低通滤波,本文由信号调理板采用RC低通滤波器来实现。

(2)对信号进行转换。对于模拟信号,PCI-9846H数据采集卡只能接收-5V~+5V的电压信号,而霍尔电压传感器输出的信号为(0~10)V的电压信号,霍尔电流传感器输出的信号为(0~100)mA的电流信号,所以必须加入信号调理板对传感器输出的信号进行转换。

 

由以上硬件的选择确定本系统的硬件拓扑结构如图7所示,图8所示为试验现场布线图。



图7 数据采集系统硬件图

图8 试验现场布线图

2.2基于LABVIEW的系统软件设计

LABVIEW集数据采集、仪器控制、工业自动化等众多功能于一身,为图形化虚拟仪器的开发提供了最佳的平台[9]。本文用LABVIEW进行数据采集系统上位机软件的编制,完成数据采集的任务:

(1) 对试验环境和测试电机的信息进行登记;
(2) 测试项目的选择以及试验前的标定;
(3) 对数据进行计算,存储以及屏幕显示等。

在使用PCI-9846H板卡之前需要安装板卡驱动,图9所示为安装好了板卡驱动之后,在设备管理器会看到相应硬件设备的增加。与此同时,为了能够应用LABVIEW进行上位机数据采集系统的开发,需要安装DAQPilot中支持LABVIEW的板卡驱动程序。除此之外,在LABVIEW中使用该板卡进行数据采集之前必须通过DAQMASTER为该块板卡进行相关的初始化工作,其中包括缓存区大小的设置,通道名称的设置等初始化工作,图10-11显示了利用DAQMASTER对PCI-9846H进行相关的初始化工作。

 



图9 PCI-9846H驱动


 

根据本文要进行测试对象的特点及要求,确定VI的程序流程图如图12所示:


图12 LABVIEW程序控制流程图

图13-15为按照上述VI程序控制流程图进行的相关LABVIEW操作界面的设计,在程序的设计过程中,采用了生产/消费者模式,通过队列的操作使数据的采集与分析在不同的循环中运行,从而避免了高速采集的同时进行数据的保存与显示容易造成死机的问题出现。



图15转矩/转速测量界面
   
在试验中,对于电量和非电量信号采集之前都选择静态标定的方法对其进行标定,其中对于控制器输入电压/电流以及控制器输出电压/电流利用PCI-9846H板卡的四个通道进行同步采集。在转矩/转速测量时,虽然转矩仪输出的是频率信号,但是本文按照模拟量对其进行采集,通过在程序中对输入信号的处理计算出信号的频率从而能够得到相应的转矩和转速值,这样可以在程序中减少一部分代码量提高程序的执行效率同时利用板载同步时钟保证转矩/转速采集的同步性。

2.3试验结果分析

本文利用基于PCI-9846H的数据采集系统完成了对电机电量与非电量的采集,图16所示为直流母线电压电流与交流电压电流动态数据波形,图17和图18分别显示了改进前后电流的输出波形以及转矩的输出波形。


 图16 电压/电流波形显示



试验结果表明基于PCI-9846H的数据采集系统具有高采样率和高采样精度,能够满足本文对死区时间引起的电压波形畸变信号捕捉的要求,对采集数据的分析表明本文所提出的根据电机的工作状态调节直流母线电压保持电压调制比在较高的范围内的方法能够很好的改善电流与转矩的输出波形,特别是在电机低速工况时效果尤为明显,进而能够减少死区时间对电机在低速工况时性能的影响。

参考文献
[1]孙逢春,程夕明.电动汽车动力驱动系统现状及发展[J].汽车工程,2000.022(004).220~224,229.
[2]翟丽.电动汽车交流感应电机驱动控制系统及其特性研究[D].北京理工大学:2004
[3]C.C.Chan,K.T.Chau. Modern Electric Vehicle Technology. UK: Oxford University Press, 2001
[4]宋强.电动车辆动力驱动系统测试平台设计开发及试验研究[D].北京理工大学:2004.
[5]董玉刚.电传动履带车辆永磁同步电机控制技术研究[D].北京理工大学:2010
[6]Choi.J.W, "Inverter output voltage synthesis using novel dead time compensation",IEEE
Transaction on Power Electronics, Vol.11:221-227, 1996.
[7]刘明基等.逆变器死区时间对永磁同步电动机系统的影响[J].微特电机,2001.3:12-15.
[8]章建锋.死区时间对输出电压的影响分析[J].电力电子技术,2007.8:31-33.
[9]顾进超.车辆电传动试验台数据采集系统的开发[D].北京理工大学:2004

关键字:PCI-9846H  死区时间  波形畸变  逆变器  数据采集 引用地址:基于PCI-9846H的死区时间引起的电压波形畸变的研究

上一篇:如何验证和分析复杂的串行总线链路模型
下一篇:静电放电抗扰度测试容易出现的问题及处理措施

推荐阅读最新更新时间:2024-03-30 22:46

5V单电源8通道数据采集系统电路设计
   电路功能与优势: 图1所示电路是一款高度集成、16位、1 MSPS、多路复用、8通道、灵活的数字采集系统(DAS),集成可编程增益仪表放大器(PGIA),能够处理全范围工业级信号。+5 V单电源为电路供电,高效率、低纹波升压转换器产生±15 V电压,可处理最高±24.576 V的差分输入信号(±2 LSB INL最大值、±0.5 LSB DNL典型值)。对于高精度应用,这款紧凑、经济型电路可以提供高精度和低噪声性能。基于逐次逼近寄存器(SAR)的数据采集系统集成真正的高阻抗差分输入缓冲器,因此无需额外缓冲;缓冲通常用来减少基于容性数模转换器(DAC)的SAR模数转换器(ADC)产生的反冲。此外,该电路具有高共模抑制,无需外部
[电源管理]
5V单电源8通道<font color='red'>数据采集</font>系统电路设计
太阳能逆变器中功率电子器件的选择技巧
  太阳能光伏系统的应用领域越来越广泛。尤其是移动系统,不用花一分钱,就从太阳能中受益。同时由于常规电能成本不断攀升,太阳能对家庭应用具有很大的吸引力。太阳能电池本身和连接太阳能电池与公共电网或分布电源的太阳能逆变器的能源效率,是这一技术取得成功的关键所在。如今,最大输出功率为5kW的高级太阳能逆变器拥有两级拓扑。图1显示了此类太阳能逆变器的多组配置。          每组都和自己的功率调节器相连,然后连接至共用直流母线。功率调节器能够使太阳能电池以最大效率工作。太阳能逆变器可产生馈入市电的交流电压。请注意,图1所示的电源网是一种可用于任何逆变器拓扑的虚设电路,外加一个市电变压器和一个输出滤波器,变压器可阻止直流分量进入市电。
[电源管理]
太阳能<font color='red'>逆变器</font>中功率电子器件的选择技巧
Maxim发布ASIL-D标准数据采集系统,可节省20%成本
Maxim Integrated Products, Inc 宣布推出MAX17852 14通道、高压、符合ASIL-D标准的数据采集系统,帮助汽车电源管理系统(BMS)开发商提供最高安全等级的电压、电流、温度测量及数据通信,同时可以大幅节省空间、缩减方案成本。这款IC专为电动汽车、混合动力电动车和其他运输车辆的系统整合而设计,是智能接线盒、48V及其他汽车电池系统的理想选择,能够承受400V、甚至更高电压。 OEM和电动汽车制造商要求电池系统均满足ISO26262标准设定的最高安全等级。采用全面的诊断功能和安全驱动架构,Maxim Integrated设计并生产的MAX178
[汽车电子]
Maxim发布ASIL-D标准<font color='red'>数据采集</font>系统,可节省20%成本
基于RS-485总线的数据采集系统
  1 硬件设计   1.1 系统整体框图   系统实质上是一个集散控制系统,更准确地说是一个远程数据采集系统,系统概念设计图如图1所示,系统整体框架图如图2所示。         1.2 系统模块设计   1.2.1 信号获取模块   系统采集大坝坝内各个方位的形变,这种形变反映出各个方位的压力值。选用NZS - 25系列差阻式应变计,它是一种大量程大应变计,适用于大坝及其他混凝土建筑物内部、钢结构等的应变量测量。它与一般压力传感器的结构不同,是通过测量比值而得到压力值,其基本结构如图3所示。        图3中,R1、R2为敏感电阻,其基准电阻值为40Ω,在其没有受压时,2个电阻的阻
[嵌入式]
科普贴:光伏逆变器怎么选择和安装
   逆变器在选择和使用时必须注意以下几点:     1)直流电压一定要匹配;     每台逆变器都有标称电压,如12V,24V等,     要求选择蓄电池电压必须与逆变器标称直流输入电压一致。如12V逆变器必须选择12V蓄电池。     2)逆变器输出功率必须大于用电器的最大功率;     尤其是一些启动能量需求较大的设备,如电机、空调等,需要额外留有功率裕量。     3)正负极必须接线正确     逆变器接入的直流电压标有正负极。一般情况下红色为正极(+),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极(+),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且应尽可能减少连接
[新能源]
你不可不知的光伏逆变器功能
逆变器又称电源调整器、功率调节器,是光伏系统必不可少的一部分。通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。逆变器的名称由此而来。光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。 逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,下面小编给大家介绍一下为什么逆变器这么神奇。 最大功率跟踪功能,保证输出功率最大化 太阳能电池板的电流和电压是随太阳辐射强度和太阳电池组件自身温度而变化的,因此输出的功率也会变化,为了保证输出电力最大化,就要尽可能的获取电池板的最大输出功率。逆变器的MPP
[新能源]
为什么我家逆变器上的发电量和电表上的不一样?
  家用光伏电站主要是利用家庭现有建筑物上的闲置资源,如屋顶、墙壁立面、阳台、院落等,安装和使用分布式光伏发电系统。     安装的光伏电站,所发出来的电有补贴外,自己用的电不花钱,用不完的电还可以卖给国家电网,过去花钱用电,现在卖电赚钱,收益率高达10%以上!     目前,光伏发电站已走入千家万户,为安装的百姓带来的收入,但在家庭光伏电站发电卖给国家电网的时候,很多安装家庭询问一个问题:为什么逆变器与电表的计量不一样?一般情况下逆变器的计数要高于电表的计数。这是为什么呢?      1、逆变器与电表计量各有误差导致     我们与有经验的电工与逆变厂家探询这一问题,得到的答复是这样的:逆变器虽然可以计量电功,但它的目的并不是
[新能源]
SynQor发布先进的军用级紧凑型4 KW,270 Vdc输入逆变器(MINV-4000-1U-270)
SynQor公司推出新型坚固耐用的 270V直流输入、高功率、紧凑型军用级逆变器 (MINV-4000-1U-270)。 新型4000W 115/230V交流输出逆变器重量轻,采用简单易用的设计,适用于军事、机载、舰载和移动式高可靠性应用。该逆变器可承受极端的电气、冲击、振动的环境条件。逆变器从标准 270V直流电源供电,并提供完全隔离、调节良好的纯正弦交流输出。该逆变器符合广泛的军用标准,专为恶劣环境中输出功率、空间、重量和可靠性是主要考虑因素的应用而设计。 MINV逆变器还具有极高的灵活性;它支持多达32个单元的并联和 N+M 冗余配置,可满足高功率和高可靠性要求。多个MINV逆变器可用于提供复杂的多相电源方案,如三
[电源管理]
SynQor发布先进的军用级紧凑型4 KW,270 Vdc输入<font color='red'>逆变器</font>(MINV-4000-1U-270)
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved