电源噪声测量的挑战及解决之道

发布者:cloudy德德最新更新时间:2014-10-08 来源: ednchina关键字:电源噪声  噪声测试  电源完整性 手机看文章 扫描二维码
随时随地手机看文章
当今的计算机、PAD、手机、通信系统设备等电子产品,处理速度越来越快,运算能力越来越强,其电源的设计也越来越复杂。进入21世纪后,芯片的制作工艺由0.18um逐步升级到了95nm、65nm、45nm,晶体管的集成度更高、主频更高、供电电压更低,这给产品的电路设计与调试带来了更大的挑战。在90年代,芯片的供电通常是5V和3.3V,使用CMOS或TTL电平,而现在,很多数字电路芯片的核心电压以及IO电平都小于3.3V,以最常用的内存芯片为例,最古老的SDR SDRAM供电电压为3.3V,DDR SDRAM为2.5V,DDR2为1.8V,DDR3为1.5V,而最新的DDR4的供电电压为1.2V,其VREF只有0.6V。这些电路的供电电压越来越小,对电源噪声的要求也更加严格,如何设计低噪声的电源、并且准确测量其电源噪声非常关键,本文将从电源完整性(Power Integrity,简称PI)的角度,简要分析电源噪声测试中可能遇到的问题和相应的解决方法。

电源噪声与PDN

在通信、计算机产品中,不论是CPU、GPU、FPGA、DDR3,其芯片内部都有成千上万的晶体管,芯片内不同功能的电路有不同电源,比如核心电路的电源VCore、输入输出缓冲(IO Buffer)的电源、内部时钟或PLL的电源等等,这些电源都来自于单板的上直流稳压电源模块。

下图1为某芯片的电源分布网络(Power Distribution Network,简称PDN)示意图,芯片的供电环路从稳压模块VRM(Voltage Regulator Module)开始,经过PCB上电源地网络、芯片的ball引脚、芯片封装的电源地网络,最后到达IC上的硅片。

当芯片上各种功能电路同时工作时,稳压电源模块VRM无法实时响应负载对于电流需求的快速变化,芯片上的电源电压发生跌落,从而产生电源噪声,为了保证输出电压的稳定,需要在封装、PCB上使用去耦电容和合理的电源平面与地平面对。从目前电源完整性分析的角度看,业内普遍认为在PCB上可以处理到几百兆赫兹PI问题,更高频率的电源完整性问题需要在芯片和封装设计时解决。原因在于:

l,在板级PI设计时,需使用容值较小、等效串联电感(ESL)较小的陶瓷电容来去耦,比如0603封装的0.1uf、10nf电容,但是电容的PWR/GND布线、过孔带来的寄生电感会增大电感,使去耦电容的有效工作频率降低,很难超越几百MHz;

2,即使板级PI设计能解决GHZ的PI问题,电源的电流还需经过芯片焊接到PCB的ball、封装上的电源/地平面,到达用电的晶体管还有较长的距离,效果不大。PI设计时把高于几百MHz的去耦放到了芯片和封装上,PCB上解决kHz – 几百MHz的去耦问题。

因此,对于板级的电源噪声测试,使用带宽500M以上的示波器足够了。由于篇幅有限,关于芯片级PI和板级PI设计、去耦电容选择等,建议查阅电源完整性书籍。

电源噪声(Power Noise)与电源纹波(Power Ripple)

电源噪声与纹波是工程师经常遇到且容易混淆的两个概念,尽管是非常普及的测试项目,但是还没有国际协会和标准组织定义如何测量DC电源的电源纹波和噪声。如下图2所示为直流电源输出部位测量到的纹波和噪声示意图,蓝色波形为纹波,红色波形为噪声,通常纹波的频率为开关频率的基波和谐波,而噪声的频率成分高于纹波,是由板上芯片高速I/O的开关切换产生的瞬态电流、供电网络的寄生电感、电源平面和地平面之间的电磁场辐射等多种因素产生的。近年来,业界已逐渐统一认识,认为在PDN的source端(VRM)测量的是电源输出的纹波,而在sink端(芯片)测量的是电源噪声。

对于电源纹波的测量,业界常用示波器限制20M带宽后,测量的DC电源输出的波形峰峰值即为电源纹波。建议在以下几种情况时测量电源纹波(带宽限定为20MHz):

1,电源芯片厂商的数据手册规定时

2,测量AC-DC电源时,比如ATX电源的输出

3,测量稳压电源模块输出时

4,测量直流参数时,或板上电路工作速率很低时

从PI的角度来看,无论是线性LDO电源、还是开关电源,都只能提供低频段(kHz-MHz)的稳定电源输出,电源的高频部分是依靠PCB、封装以及芯片内具有快速充电、放电功能的电容来实现的。当板上芯片工作速率在几十MHz以上时,必须测量电源噪声,探测点尽量要靠近待测试芯片的电源引脚。

电源噪声测量的几大挑战

由于低电压电源的噪声要求越来越严格,比如JEDEC规范中规定了DDR3的VREF的电源噪声在+/-1%VDD以内(如上图2),1.5V x 1% = 15mV,即电源噪声的峰峰值不大于30mV;而Xilinx的Virtex-7 FPGA要求电源供电在10kHz-80MHz范围内电压变化峰峰值不超过10mV。测量这类噪声较小的电源非常具有挑战,而以下几点会影响到电源噪声测量的准确性:

1,示波器的底噪和量化误差

2,使用衰减因子大的探头测量小电压

3,探头的GND和信号两个探测点的距离过大

4,示波器通道的设置

下面将通过实测或理论分析,逐一介绍影响电源噪声测量的几种因素。

示波器的底噪和量化误差

当待测试信号比较微弱时,对示波器的底噪要求更高了,如果示波器的本底噪声接近于待测试信号,就无法保证仪器的测试精度了。HDO4000相比常规的实时示波器,使用了更低噪声的放大器,因此其底噪远低于其他示波器,此外,HDO4000使用了12位的ADC,比常规的8位ADC的示波器有更高的分辨率和更低的量化误差。

另外,测量微弱信号时,为了避免量化误差,尽量使用较小的垂直刻度,比如5mv和2mv,在这种刻度下,某些型号的示波器的偏置电压只能在+/-1V以内调节,无法直接测量高于1V的电源噪声,而HDO4000示波器在5mV时垂直偏置电压可在+/-4V内调节,可以满足多种低电压电源的噪声测量。

使用衰减因子大的探头测量小电压

工程师在测量电源噪声时,经常使用有源探头或者无源探头直接探测靠近待测试芯片的电源和地网络,由于常规的无源探头或有源探头的衰减因子为10,和示波器连接后,垂直刻度的最小档位为20mV,在不使用20M低通滤波器时,示波器和探头的本底噪声峰峰值约为30mV。以DDR2的1.8V供电电压为例,如果按5%来算,其允许的电源噪声为90mV,探头的噪声已经接近待测试信号的1/3,所以,用10倍衰减的探头是无法准确测试1.8V/1.5V等小电压,需要使用1:1的无源传输线探头来测量此类低电压电源的噪声。 [page]

探头的GND和信号的距离过大

在电源噪声测试时,探头的GND和信号两个探测点的距离也非常重要,当两点相距较远时,待测试信号(即电源噪声)的环路较大,由于探测点很靠近高速运行的芯片,近场辐射较大,所以会有很多EMI噪声辐射到探头的信号回路中(如图4所示),使得示波器测得的波形包括了其它信号分量,导致错误的测试结果。所以要尽量减小探头的信号与地的探测点间距,减小环路面积。

示波器通道的设置

在电源噪声测试中,还存在示波器通道输入阻抗选择的争议。示波器的通道有DC50/DC1M/AC1M三个选项可选。一些工程师认为应该使用1M欧的输入阻抗,另一些认为50欧的输入阻抗更合适。

在芯片端的电源和地阻抗通常是毫欧级别的,高频的电源噪声从同轴电缆传输到示波器通道后,当示波器输入阻抗是50欧时,同轴电缆的特性阻抗50欧与通道的完全匹配,没有反射;而通道输入阻抗为1M欧时,相当于是高阻,根据传输线理论,电源噪声发生反射,这样,导致1M欧输入阻抗时测试的电源噪声高于50欧的。在下面的测试中验证了这一观点。

我们使用了某1G带宽的示波器测量某机顶盒内某芯片的电源噪声,示波器采样率为2.5GS/s,时基为1ms/div,通道带宽为1G,通过ERES函数限制带宽为625MHz,探头为1倍衰减的传输线探头,示波器通道分别设为DC1M和DC50,记录测试数据,图5为DC50加上625M低通滤波器后的电源噪声测试结果,其平均值为21.573mV。表2为改变通道阻抗和带宽的4种组合下的电源噪声以及电源电压均值。

可以看到, 通道阻抗为1M欧、带宽为625MHz时,电源噪声为24.1mV;通道阻抗为50欧、带宽为625MHz时,电源噪声为21.573mV;可见,通道阻抗为1M欧时电源噪声测量结果大于DC50的。 所以,测量电源噪声是需要选择DC50,测量电源的直流电压要选更高阻抗的DC1M。

测试电源噪声时,示波器的采样率建议设置为2Gs/s以上以采集到高频段的噪声。时基设置为1ms/div以上以捕获大于10ms的波形。如果捕获的时间长度不够,则会导致测量结果偏差较大。开关电源系统通常是AC-DC-DC的变换过程。AC源于电网电压,是一种源效应,经过闭环控制后仍然很难消除。电网电压的频率是50Hz,整流之后是100HZ。电源纹波测量应完整地包含100HZ的低频周期。

电源噪声测量的解决之道

考虑到以上几种影响噪声测量的因素,HDO4000示波器加上1:1无源传输线探头,通道阻抗设为DC50是目前最好的测量电源噪声方案。HDO4000为12比特分辨率的高清示波器,能提供更高的分辨率,更小的量化误差,更灵活的偏置电压设置、更低的底噪。

如下图6为HDO4000示波器使用1:1无源探头测量某机顶盒的电源噪声测试结果,可以看到,电源电压为1.27V,其电源噪声峰峰值不超过18.22mV,统计后的平均值为16.2575mV。在图5和表格2中,使用普通8位ADC示波器测量相同电源,得到的电源噪声分别为21.573mV和22.371mV,很可能是由于后者的底噪较大引起的。

同时,使用了示波器独特的频谱分析软件,在频域中实时观察电源噪声的主要来源。从图中左侧的列表中可以看到,噪声频谱的第一个峰值频点为332KHz,应该是板上332KHz的开关电源引入的,该频点的幅度比其他峰值频点大20dB,说明它是噪声的主要来源;另外,还可以看到200MHz的频点,应该是板上200MHz的时钟引入的噪声。

如果使用常规实时示波器测量电源噪声,当垂直刻度调到5mV/div时,偏置电压可能在1V以内,无法测量大于1V的电源,通常,在1:1的无源传输线探头中串联隔直电容,把待测试信号隔直后就可以测量了。这种测试方法的缺点为隔直电容会影响测试结果,选择不同的电容可能有不同的测试结果,增加了测试的不确定性。

对于低电压电源的噪声测试,以下为各种测试方案,排前面的为优选的测试方案。

1,低噪声12位ADC示波器HDO4000 + 1倍衰减无源传输线探头

2,常规8位ADC示波器 + 1倍衰减无源传输线探头

3,常规8位ADC示波器 + 隔直电容 + 1倍衰减无源传输线探头

关键字:电源噪声  噪声测试  电源完整性 引用地址:电源噪声测量的挑战及解决之道

上一篇:浅析电源噪声的探测方案
下一篇:多目标质量指标优化设计

推荐阅读最新更新时间:2024-03-30 22:47

示波器是测量电源纹波和电源噪声的必备工具
示波器是测量电源纹波和电源噪声的必备工具,但在实际的测量中,如何选择合适的带宽、采样率,如何选择探头、示波器的耦合方式,甚至接地,都会对测量结果带来不一样的影响,以下总结了一些来自具体实际案例中的关键注意事项。 电源纹波(Power Ripple)和电源噪声(Power Noise)的定义 目前,关于电源纹波和电源噪声其实并没有一个协会给定的标准定义。但是,业内渐渐形成了一个约定俗成的说法,将电源纹波理解为电源模块包括VRM的输出电压的波动,和复杂的供电网络无关,或者说是电源输出的源端(Source端)的电压的波动,电源噪声则是指电源模块工作在实际产品系统中,经过供电分布网络将电源能量输送到芯片管脚处,在芯片管脚处的电压的波动
[测试测量]
示波器是测量<font color='red'>电源</font>纹波和<font color='red'>电源</font><font color='red'>噪声</font>的必备工具
高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(三)
2.2低频噪声特性及测试技术要求 2.2.1低频噪声特性 低频噪声信号有着一些与信号测试领域中的其他传统信号不一样的特性。其中最主要的特性就是其信号的幅度极其微弱。低频噪声信号其本质是一种叠加在其他直流物理量之上的微弱噪声,因而其物理量非常小。常见的电压噪声的功率谱密度仅在10 -8 V 2 /Hz到10 -18 V 2 /Hz之间。金属膜电阻以及其他一些体内电流密度非常均匀的电子元器件的低频噪声量级会更小。 低频噪声信号幅值的微弱导致了它具备另一个特性:信号对空间电场和交流电的干扰非常敏感。当我们在观察低频信号的功率谱密度时,通常会看到如下的图像: 图2.6中Y轴为电流的功率谱密度,单位为A 2 /Hz.从图2.6中
[测试测量]
高阻器件低频<font color='red'>噪声</font><font color='red'>测试</font>技术与应用研究--低频<font color='red'>噪声</font><font color='red'>测试</font>技术理论(三)
降低电源纹波噪声的一些常用方法
在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。下文结合纹波噪声的波形、测试方式,从电源设计及外围电路的角度出发,阐述几种有效降低输出纹波噪声的方法。 1、电源的纹波与噪声图示 纹波和噪声即:直流电源输出上叠加的与电源开关频率同频的波动为纹波,高频杂音为噪声。具体如图1所示,频率较低且有规律的波动为纹波,尖峰部分为噪声。 图1 2、纹波噪声的测试方法 对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。 但不管用平行线测试法还是靠测法,都需要限制示波器的带宽为20MHz,同时需要去掉地线夹。 具
[电源管理]
降低<font color='red'>电源</font>纹波<font color='red'>噪声</font>的一些常用方法
技术文章—如何使用超低噪声LDO提供“干净”的电源
线性稳压器集成电路(IC)将电压从较高电平降至较低电平,且无需电感。低压差(LDO)线性稳压器是一种特殊类型的线性稳压器,其压差(需要保持稳压的输入和输出电压之间的差值)通常低于400 mV。早期的线性稳压器设计提供大约1.3 V的压差,这意味着对于5 V的输入电压,器件进行调节可实现的最大输出仅为3.7 V左右。然而,在当今更复杂的设计技术和晶圆制造工艺条件下,“低”大致定义为 100mV到300mV左右。 此外,虽然LDO稳压器通常是任何给定系统中成本最低的元件之一,但从成本/效益角度来说,它往往是最有价值的元件之一。除了输出电压调节之外,LDO稳压器的另一个关键任务是保护昂贵的后端负载免受恶劣环境条件的影响,例如电压
[电源管理]
技术文章—如何使用超低<font color='red'>噪声</font>LDO提供“干净”的<font color='red'>电源</font>
一场精度的“交响乐”:以低噪声技术协调电源和信号完整性
2004 年夏天,一次标准超声波检查显示 Steve Schnier 夫妇即将迎来一对双胞胎。但在几周后进行的另一次超声波检查中,他们惊奇地发现这次显示的是三胞胎。Steve 作为德州仪器开关稳压器事业部的系统工程师,怀疑很可能是不必要的噪声或超声波系统中的信号干扰,导致了这种异常情况。 Steve 表示:“在我开始从事医疗成像器件和无线基础设施领域的相关工作之前,我从来没有真正意识到这一点。在这些领域中,噪声是个大问题。”现在他的三胞胎已经长大成人,正在准备考大学。 距离 Steve 遇到超声波检查异常已经过去将近 20 年。在这些年里,技术取得了显著的进步。不过,探寻降低系统噪声并提高信号质量来实现精密信号链的方法,仍
[电源管理]
一场精度的“交响乐”:以低<font color='red'>噪声</font>技术协调<font color='red'>电源</font>和信号完整性
LabVIEW应用于车辆通过噪声测试的声学波束成形
声学图像识别50公里时速、1,904.3 Hz下的轮胎和排气噪声 "我们选择了紧凑且直流供电的NI硬件,它能为阵列中的麦克风提供电源。" - Samir N.. Gerges, Federal University of Santa Catarina (UFSC) 挑战: 开发一款便携且价格合理的声学波束形成形,实现通过噪声测量和其他应用中的噪声源识别 。 解决方案: 使用32个麦克风组成的螺旋阵列、NI LabVIEW软件、NI声音和振动测量套件,以及32通道的NI CompactDAQ系统,搭配8个NI 9234 4通道 动态信号采集 (DSA) 模块来获取噪声源的可视化图像,从而识别行驶车辆所产生的信号。
[测试测量]
LabVIEW应用于车辆通过<font color='red'>噪声</font><font color='red'>测试</font>的声学波束成形
更静一点:如何驾驭噪声电源
 生活噪音严重干扰人们的日常生活,而电源噪声同样可能会对电路会造成干扰。电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作。电源中的电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。如何解决这个电源噪声问题呢?本文将给你答案。   无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。   图1显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的PWM(脉宽调制)信号。
[电源管理]
更静一点:如何驾驭<font color='red'>噪声</font><font color='red'>电源</font>
行业人士浅析在开关电源设计中噪声的降低方法
开关电源 的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。 电路和器件的选择 一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关)、ZCS(零电流开关)、共振模式。(ZCS的一种)、SEPIC(单端初级电感转换器)、CK(一套磁结构,以其发明者命名)等。 减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。使用软开关技术,虽然会稍微降低效率,但在节省成本和滤波/屏蔽所占用空间方面有更大
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved