如何用DSP和FPGA构建多普勒测量系统

发布者:会飞的笨鱼最新更新时间:2014-12-17 来源: eccn关键字:DSP  FPGA  多普勒  测量系统 手机看文章 扫描二维码
随时随地手机看文章

多普勒测量系统

多普勒测量系统利用多普勒效应测量运动目标(固体、液体或气体)的速度。最著名的应用大概要算雷达枪了,交通巡警利用它检测超速汽车。

在测量除汽车速度之外的其他物体的运动(例如心脏中血液的流动)时,需要进行多种测量,来确定更为复杂的流动的细节。方法之一是利用电子束聚集技术。

在这种技术中,将使用大量探测器(许多小雷达枪)测量从发射源返回的频率。这些探测器沿抛物线分布(如图1 所示),因此从焦点返回的信号将会同时到达每个探测器。将这些信号组合起来,并对显著速度的微小波动进行少量处理,就可以确定位于焦点处的物体的速度。如果可以移动探测器来对整个关注区域进行扫描,那么这种方法效果会相当好,但是如果没有这样的条件,则可以采用另外一种技术,它可以获得同样的结果。通过插入一定的可编程的延迟,改变各个探测器的输入组合的时间,可以将焦点改变到关注区域中的几乎任何位置。例如,加入一定的固定额外延迟可以使焦点远移,而改变延迟来缩短

系统实现示例

图 3 显示了一种系统实现示例的框图。位于图中部的FPGA负责产生发射器使用的输出信号。该实现采用Xilinx直接数字频率综合器IP核,可方便地产生各种波形。可以根据测量目标的不同轻松改变

探测器测量返回信号的模拟值,产生馈送到FPGA的数字值。FPGA对输入信号执行部分初步滤波运算,来调整探测器的位置。然后FPGA向每个探测器数据流中插入一定可编程延迟,以实现电子束聚集功能。数据流被组合起来,一个数字滤波器负责确定信号的频率分量。这样就得到了确定焦点速度所必需的多普勒读数。

在FPGA的内部有一个MicroBlaze软核,控制着测量过程,从而实现高层次的功能,如扫描、初始化、测试,以及诊断等。

DSP读取和存储FPGA执行操作的结果。一旦完成一系列扫描,处理器就可以构建出一幅针对扫描区域的数字图像。可以为不同的速度分配不同的颜色(按照线性、对数或任何其他比例),并将数字图像转换成视频图像,在图形终端上实时显示或记录下来留待以后回放。利用众多可以得到的软件或工具包中的一个,还可以在处理器中轻松实现到JPEG或其他视频格式的转换,还可以采用其他系统分割进行实验。如果实时视频处理和存储占用了处理器过多带宽,可以将算法的一部分(比如扫描数据的预处理)放在FPGA中来执行。

测量过程的另一个重要部分是确定目标的质量。可以通过测量从焦点返回探测器的能量大小来实现这一功能。返回的能量越多,则目标越大(一般而言)。当测量的目标具有固定连贯性时(如在管道中流动的油或其他液体),这种测量效果特别好,但当系统中存在各种不同质量或反射时,测量就很困难了。

显然,对被测系统多些了解可以为测量过程提供一些线索。通过存储与返回信号的幅度相对应的数字值,可以为FPGA协处理器增加能量测量功能。该值也是经过了FPGA的延迟。
作为选择,JPEG处理可以作为一项独立的功能通过FPGA来执行,从而使处理器留出更多时间进行数据预处理器。有许多选项可供选择,但提供一种能够快速实现不同分割的易用平台才是至为重要的。

类似的以协处理为本的应用可以从硬件开发平台的使用中获得好处。利用硬件平台可以让您轻松实验各种系统和算法分割--将一些功能在FPGA 中实现,而另一些功能放在DSP中。DSP应用程序一般很难用软件进行仿真,因此快速创建硬件/固件/软件平台的能力可以极大地缩短开发时间。使用赛灵思工具套件中的协仿真工具,通过The MathWorks Simulink和目标硬件进行开发,是一种可以大大缩短设计时间的技巧。

Avnet DSP协处理器设计套件

Avnet DSP协处理设计套件是针对以DSP为导向、同时需要使用FPGA和DSP的广泛应用开发而设计的。套件配有两块主电路板。Virtex-4评估板(如图4所示)配有 Xilinx Virtex-4 SX-FF668 FPGA、平台闪速配置PROM、扩展连接器、Cypress CY7C68013 USB2.0 控制器、国家半导体的DP83847 10/100 以太网端口、128x64 OSRAM 图形显示器、8MB闪存、32MB DDR SDRAM 以及各种用户开关和LED。第二块电路板是 TI DSP 适配器模块(如图5所示),用于在Virtex-4 电路板和各种 TI DSP评估板之间起接口作用。可以从 Avnet公司购买TI电路板,完成开发平台的构建。

套件还包括一些设计示例和用户文档,以便新的DSP设计?r更容易上手。赛灵思网站上提供了多个赛灵思应用说明和参考设计,有些使用了可从 DSP System Generator 工具获得的赛灵思IP核,以帮助用户上手。

 

图3:示例系统框图。

本文小结

对广泛的DSP应用而言,同时使用FPGA和固定功能数字信号处理器的方法是可行的。在很多此类应用中,利用专门为协处理应用而开发的硬件设计套件来开发设计原型也是可行的。Avnet设计服务部提供各种设计套件,可组合使用以创建恰好适合您的设计的硬件平台。使用基于硬件的开发平台开始您的设计。

关键字:DSP  FPGA  多普勒  测量系统 引用地址:如何用DSP和FPGA构建多普勒测量系统

上一篇:数字开关电源控制系统测试过程
下一篇:光传感器在绝缘子盐密测量中的应用

推荐阅读最新更新时间:2024-03-30 22:51

解析高速ADC和DAC与FPGA的配合使用
  许多数字处理系统都会使用FPGA,原因是FPGA有大量的专用DSP以及block RAM资源,可以用于实现并行和流水线算法。因此,通常情况下,FPGA都要和高性能的ADC和DAC进行接口,比如e2v EV10AQ190低功耗四通道10-bit 1.25 Gsps ADC和EV12DS130A内建4/2:1 MUX的低功耗12-bit 3 Gsps DAC。 通常情况下,这些转换器的采样率都达到了GHz的级别。对工程师团队来说,除了混合信号电路板布局之外,理解和使用这些高性能的设备也是一个挑战。   这些e2v数据转换器具有带宽宽、性能好的特点—数据手册上通常称为模拟全功率带宽—即使是在高奈奎斯特区。(这种能力是不多见的。)正是
[电源管理]
解析高速ADC和DAC与<font color='red'>FPGA</font>的配合使用
基于DSP的弧焊逆变电源数字化控制系统
弧焊逆变电源(亦称弧焊逆变器)是一种高效、节能、轻便的新型弧焊电源。目前,采用ICBT作为功率控制器件来提高功率主电路的控制性和稳定性,以8位和16位单片机作为控制核心进行焊接程序控制和焊接参数运算处理,提高了弧焊逆变电源的操作性。数字信号处理器(DSP)的广泛普及和应用,为弧焊逆变电源控制系统的全数字化提供了必要的硬件和软件基础。 DSP与单片机性能比较分析 单片机(MCU)广泛应用于家用电器、工业控制和智能终端,主要起控制作用。DSP可高速地实现过去由软件实现的大部分算法。表1比较了典型单片机和DSP的性能指标。 由表1可知,与单片机相比,DSP的优势表现为:数据处理能力强、高运算速度、能实时
[嵌入式]
TI 扩展Code Composer Studio集成开发环境的实用程序缩短达芬奇技术与DSP应用的开发时间
2007 年 3 月 9 日,北京讯 日前,德州仪器 (TI) 宣布推出全新 Code Composer Studio集成开发环境 (IDE) 白金版。全新 Code Composer Studio 3.3 (CCStudio v3.3) 白金版支持多处理器运行将分析特性提高到新的水平,可不断满足高级嵌入式系统开发发展的需求。统一的新型断点管理器、缓存状态可视化工具,完全集成的分析系统和代码覆盖功能,CCStudio v3.3 为 DSP 开发人员提供了强大的工具,能更高效地分析系统运行状态,减少开发工作,从而加速新产品上市场进程。更多详情,敬请访问: www.ti.com/ccstudionew 。 一直以来,CCStudio
[新品]
基于TMS320C6711的中心定位实时图象处理系统
地平仪是卫星姿态控制系统的关键子系统,其测量精度和可靠性直接关系到卫星姿态是否精确和稳定,在凝视或静态型地平仪中,地球被成像在红外面阵探测器上,因此地球图像的边缘可落在红外面阵探测器的光敏面内。对该图像进行中心定位处理,可提取出卫星的姿态参数,通过调整卫星滚动轴和俯仰轴方向,使固定在卫星上的红外面阵探测器视场中心正好对准地球中心,从而精确定位整个卫星系统的姿态,由于地平圈图像具有远多于通过圆锥扫描方式获得的信息,因而可获得更高的精度,本文利用TI公司的DSP芯片TMS320C6711B(简称C6711)实现了中心定位的相关算法。实践证明,该方法不仅可以满足实时性要求,还可以提高地平仪的测量精度,对提高卫星姿态的精度具有重要意义。
[应用]
Socionext获得CEVA图像和视觉DSP授权许可
蜂窝通信、多媒体和无线连接DSP IP平台授权厂商CEVA公司宣布,先进SoC设计技术的新领导厂商Socionext Inc.已经获得CEVA图像和视觉DSP 授权许可,用于助力其最新一代Milbeaut 图像处理LSI芯片,这款芯片主要面向监控、数码单反相机、无人机、运动相机 (action)及其它camera相关的设备。今天发布的MB86S27是首个集成CEVA DSP IP的Milbeaut图像处理器,而且将会很快进入批量生产。 Socionext公司副总裁兼业务集团Ⅲ部主管Mitsugu Naito表示: 在我们的Milbeaut系列图像处理器中集成CEVA图像和视觉DSP IP,可让客户通过采用功能强大的矢
[嵌入式]
FPGA实现汽车视频和图形控制
LCD显示器真是无处不在,在家庭、超市、体育馆以及汽车内你都可以见到它们的身影。无疑车载LCD显示系统是增长最快的市场。增长的动力包括:不断下降的显示器价格、不断提升的用户体验、更多的产品性能以及车内消费类产品的集结。 典型的图形显示系统一般都是利用标准的特殊应用标准处理器(ASSP)或者定制的特殊应用集成电路(ASIC)作为控制器来构建的。但汽车图形设计师在利用这些器件构建系统时遭遇到了不小的麻烦,其中包括:较短的产品生命周期,基于PC的系统总线接口,无法适应新标准和新显示器类型等。所有这些问题都限制了设计在其它应用中的重用可能性。 图1给出了车载图形/视频系统的一个典型实例。图的左侧列出了用于驱动图形系统的
[嵌入式]
用<font color='red'>FPGA</font>实现汽车视频和图形控制
基于DSP的彩色TFT-LCD数字图像显示技术研究
计算机技术的飞速发展,嵌入式图像系统广泛应用于办公设备、制造和流程设计、医疗、监控、卫生设备、交通运输、通信、金融银行系统和各种信息家电中。所谓嵌入式图像系统,是指以图像应用为中心,以计算机技术为基础,软件、硬件可裁减,对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。嵌入式图像系统对图像显示技术提出了各种严格要求,必须选择合适的显示器,设计出合理的显示控制方法。 系统硬件设计 统要构建一个嵌入式、高速、低功耗、低成本的图像显示硬件平台,要求能真彩显示静态或动态彩色图像。为达到真彩和无拖影的显示动态图像,同时兼顾低功耗的要求,采用SHARP(夏普)公司的LQ057Q3DC02彩色TFT-LCD作为显示器;
[嵌入式]
Floorplanner工具应用基于FPGA的嵌入式
  通过在可编程逻辑器件中嵌入低成本、高性能的处理器,芯片开发商不但能提高系统的整体性能,而且能够从可编程逻辑器件原本就具备的开发时间短、上市快的特点受益。利用本文谈到的Floorplanner工具可以对嵌入式处理器、相关的IP和定制逻辑进行布局控制和分组,简化复杂系统级芯片的开发,提高系统整体性能。   嵌入式处理器内核越来越多地在FPGA设计中得到采用,人们开始认识到高级可编程逻辑所带来的好处。通过将低成本高性能的嵌入式处理器内核与可定制的FPGA电路配合使用,电子设备生产商能为其特定的产品量身定制芯片,从而以较低的成本和较快的速度将产品推向市场。但若想合理地采用这项先进技术,设计者需要功能强大的工具才能满足设计要求。
[嵌入式]
Floorplanner工具应用基于<font color='red'>FPGA</font>的嵌入式
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved