引言
频率是指某周期现象在单位时间内所重复的次数,它与时间在数学上互为倒数。时间频率的精确测量促进了科学的发展,而科学的发展又反过来把时间频率的测量提高到新的高度。特别在最近的几十年里,频率和时间的测量精度已达到非常高的水平,即已远远超过其他所有物理量的测量精度。它主要的应用领域有导航和通信两大类,以及空间技术、工业生产、交通、科学研究及天文学与计量学方面。
为了适应现代技术发展的要求,新型的频率计中都使用了单片机进行数据处理,这样,由软件代替了复杂的硬件电路,使仪器的结构简化,功能增强。本文给出一种基于TMS320F2812(简称F2812)DSP的一种简易测频方法。该方法有效利用F2812的片内外设事件管理器的捕获功能,在被测信号的有效电平跳变沿捕获计数,电路实现多靠软件设置,运算简单,实时性好,测量精度高。
1 测量方法
常用的测频方法主要有直接测频法、直接测周法以及多周期测量法。直接测频法虽在高频段的精度较高,但在低频段的精度较低,直接测周法则恰恰相反。多周期测量法是将被测信号和标准信号分别输入到两个计数器,其实际闸门时间不是固定值,而是被测信号周期的整数倍,因此消除了对被测信号计数时产生的±1 Hz的计数误差,其精度仅与闸门时间和标准频率有关。因此本设计采用多周期测量法作为具体的实施方案。
2 系统的设计
2.1 系统的硬件设计
硬件系统总体框图如图1所示。被测信号首先经过限幅放大、直流偏置、整形电路,变换为0~3.3 V的方波信号,然后再进入DSP,利用其定时器和捕获单元实现频率的测量。测量完成后,一方面可由键盘设置相关参数通过LCD显示测量结果,另一方面可通过RS一232传送给PC机显示测量结果。另外,为了提高系统的可靠性,增加了一个自我校准电路,即在测量之前,可通过软件设置产生1 MHz的标准脉冲信号,送到信号调理模块的输入端,检测测量结果是否正确,从而达到自我校准的目的。
本设计选用美国德州仪器公司(TI)的F2812 DSP作为核心处理单元。F2812是TI公司近几年推出的高速、高精度的工业控制DSP芯片。它运算速度快,工作时钟频率达150 MHz,指令周期可以达到6.67 ns以内,低功耗(核心电压1.8 V,I/O口电压3.3 V)。它采用哈佛总线结构,具有强大的操作能力;外围设备包括3个32位的CPU定时器,16通道的12位A/D转换器,串行外围接口(SPI),2个串行通信接口(SCI)等。其片内外设时间管理器含有2个模块(EVA和EVB),每个模块都包括2个通用定时器,3个全比较/PWM单元,3个捕获单元和 1个正交编码脉冲电路。本设计主要利用EVA中的2个通用定时器(T1和T2),2个捕获单元(CAPl和CAP3),EVB中的1个通用定时器 (T3)。具体测量原理如图2所示。
首先设定T3比较值(预置闸门时间为0.012 8 s),设定T1的比较值为1,使能CAPl。然后使能T1,当其接收到一个整周期的被测信号时即可产生比较输出,同时产生比较中断,读取CAPl的栈值 (即T2的初值t2_1),清T1、T2上溢次数,使能CAP3和T3。最后当T3定时结束,借助于D触发器在被测信号的下一个上升沿到来时,切断T1的比较输出,同时PDPINTA将被置位,然后记录T1和T2的上溢次数tlofcount、t2ofcount,读取CAPl的栈值(即T2的末值 t2_2)和CAP3的栈值(即T1的末值tl_2)。由所得数据计算频率,禁止T1、T2、CAPl和CAP3。频率计算公式为:
注意:CAPl的捕获时基为T2,CAP3的捕获时基为T1,标准频率信号为150 MHz时钟频率的8分频。
2.2 系统的软件设计
主监控程序是整个软件系统的总调度程序,它控制着程序的有序运行。系统在上电或复位后,主程序先调用各模块的初始化子程序,主要包括GPIO初始化、PIE初始化、EV初始化和SCI初始化。系统初始化完成之后,主程序启动CPU_Timer0,使能 T1、T2的上溢中断,启动CAPl,设置T1的比较值为1,等待T1CINT置位,开始测量频率。为减小测量过程中产生的随机误差,所测结果均取平均值。利用CPU_Timer0产生一定的时间段(O.6s)。该时段结束后(CPU_TimerO中断标志位置位),即对该段时间段内记录的测量结果求均值。此时,如果查询到上位机发出接收请求,则传送相应数据至PC显示。然,后,重新初始化定时器和捕获单元,进入下一轮测量。主监控程序流程如图3所示。[page]
测频的部分源代码如下:
3 误差分析及测试结果
3.1 量化误差
设被测信号的频率为Fx,其真实值为Fxe,标准频率为Fs,在一次测量中,预置闸门时间为T′,Tpr为实际闸门时间,被测信号计数值为Nx,标准频率信号计数值为Ns。
Fx计数的起停时间是由该信号的上升沿触发的,在T′时间内对Fx的计数Nx无误差,对Fs的计数Ns假设相差N个脉冲,即|△et|≤n。
由于Fx/Nx=Fs/Ns,Fxe/Nx=Fs/(Ns+△et),根据相对误差公式有:
因此可以得到以下结论:
①相对测量误差与被测信号的频率无关。
②增大T′或者提高Fs,可以增大Ns,减少测量误差,提高测量精度。本设计方案中,预置闸门时间限定了最低的测量精度。
③误差分析中的n,主要由硬件切断T1PWM所需要的时间决定,为一个小整型常数。若预置闸门时间Tpr=O.012 8 s,则
即使n取不为l的小整型常数,仍可以使得精度维持在十万分之一以内,并且可以随着预置闸门时间的适当延长,得到进一步的提高。[page]
3.2 测量的原理误差和标准频率误差
本测量原理类似多周期同步测量原理,主要的原理误差来自测量即将结束时,由D触发器产生低电平跳变来切断T1PWM,从而使其产生由CAPl和CAP3同时捕获上升沿的跳变。这段时间主要是由D触发器的反应时间决定。在测量过程中,针对这部分误差,可以通过适当增加预置闸门的时间来克服,同时考虑到DSP 内部高速的时钟频率,这并不会明显地增加测量耗时,但却达到了弱化此误差的影响、增加测量精度的目的。
标准频率误差为△Fs/Fs。因为晶体的稳定度很高,标准频率误差可以进行校准,并且已将DSP内部的高速时钟频率进行了适当的分频,所以相对于量化误差,校准后的标准频率误差可以忽略不计。
3.3 测试结果
用函数信号发生器(型号为Tektronix AFG3010;精度为O.000 1%)产生方波信号,用设计的频率计测出频率,求出误差。本测频系统的测量精度可达到O.01%。根据误差分析可知,系统的最大误差发生在预置闸门时间正好填充了整数个被测信号时,即频率为78.125 Hz或者其整数倍时,所以选择这些点进行测试。实际的测试数据如表1所列。
4 结论
本文着重分析了数字频率计的设计方案、硬件组成,以及采用Modbus协议实现上位机与下位机通信的软件设计。特点有:
①在频率测量原理方面,由于采用了多周期测量原理,消除了对被测信号计数时产生的±1个计数误差,其精度仅与闸门时间和标准频率有关,克服了传统的测频法或测周法的不足,实现了宽量程、高精度的频率测量。同时由于预置闸门时间的存在,保证了当被测频率在各频段之间来回切换时,系统反应灵敏,跟随性能好。
②在系统的总体设计方面,充分利用了F2812 DSP的内部资源,即使用事件管理器中的定时器、捕获单元完成频率的测量;使用PWM的输出实现自检电路的设计;使用串口通信模块完成上位机和下位机的通信。在测量结果的显示方面利用RS232,通信协议采用Modbus协议,实现下位机和上位机的通信,将测量结果在上位机中显示出来。
本文只探讨了如何对单路信号进行频率测量,而对于多路信号,可先使其经过一个与门,通过软件判断哪一路信号,然后再运用本设计方法进行测量。针对这种情况所产生的误差问题还需作进一步的探讨,本文只给出初步的探索。
参考文献
1. 周文水 相位宽带测频原理的研究与实现 [学位论文]
2. 徐科军.李国丽 电气测试基础 2002
3. 张志文.田英峰 基于 DSP的高精度频率测量系统的研究 [期刊论文] -西安工业大学学报2007(2)
4. Texas Instruments Incorporated TMS320F28x DSP Family User's Guide
5. 梁文海 用单片机实现双计数器多周期同步法频率测量 [期刊论文] -现代电子技术2007(7)
6. 郑杰.陶维青 基于 TMS320F2812事件管理器的一种测频方法 [期刊论文] -微计算机信息2006(5)
关键字:TMS320F2812 数字频率计
引用地址:基于TMS320F2812的数字频率计的设计
频率是指某周期现象在单位时间内所重复的次数,它与时间在数学上互为倒数。时间频率的精确测量促进了科学的发展,而科学的发展又反过来把时间频率的测量提高到新的高度。特别在最近的几十年里,频率和时间的测量精度已达到非常高的水平,即已远远超过其他所有物理量的测量精度。它主要的应用领域有导航和通信两大类,以及空间技术、工业生产、交通、科学研究及天文学与计量学方面。
为了适应现代技术发展的要求,新型的频率计中都使用了单片机进行数据处理,这样,由软件代替了复杂的硬件电路,使仪器的结构简化,功能增强。本文给出一种基于TMS320F2812(简称F2812)DSP的一种简易测频方法。该方法有效利用F2812的片内外设事件管理器的捕获功能,在被测信号的有效电平跳变沿捕获计数,电路实现多靠软件设置,运算简单,实时性好,测量精度高。
1 测量方法
常用的测频方法主要有直接测频法、直接测周法以及多周期测量法。直接测频法虽在高频段的精度较高,但在低频段的精度较低,直接测周法则恰恰相反。多周期测量法是将被测信号和标准信号分别输入到两个计数器,其实际闸门时间不是固定值,而是被测信号周期的整数倍,因此消除了对被测信号计数时产生的±1 Hz的计数误差,其精度仅与闸门时间和标准频率有关。因此本设计采用多周期测量法作为具体的实施方案。
2 系统的设计
2.1 系统的硬件设计
硬件系统总体框图如图1所示。被测信号首先经过限幅放大、直流偏置、整形电路,变换为0~3.3 V的方波信号,然后再进入DSP,利用其定时器和捕获单元实现频率的测量。测量完成后,一方面可由键盘设置相关参数通过LCD显示测量结果,另一方面可通过RS一232传送给PC机显示测量结果。另外,为了提高系统的可靠性,增加了一个自我校准电路,即在测量之前,可通过软件设置产生1 MHz的标准脉冲信号,送到信号调理模块的输入端,检测测量结果是否正确,从而达到自我校准的目的。
本设计选用美国德州仪器公司(TI)的F2812 DSP作为核心处理单元。F2812是TI公司近几年推出的高速、高精度的工业控制DSP芯片。它运算速度快,工作时钟频率达150 MHz,指令周期可以达到6.67 ns以内,低功耗(核心电压1.8 V,I/O口电压3.3 V)。它采用哈佛总线结构,具有强大的操作能力;外围设备包括3个32位的CPU定时器,16通道的12位A/D转换器,串行外围接口(SPI),2个串行通信接口(SCI)等。其片内外设时间管理器含有2个模块(EVA和EVB),每个模块都包括2个通用定时器,3个全比较/PWM单元,3个捕获单元和 1个正交编码脉冲电路。本设计主要利用EVA中的2个通用定时器(T1和T2),2个捕获单元(CAPl和CAP3),EVB中的1个通用定时器 (T3)。具体测量原理如图2所示。
首先设定T3比较值(预置闸门时间为0.012 8 s),设定T1的比较值为1,使能CAPl。然后使能T1,当其接收到一个整周期的被测信号时即可产生比较输出,同时产生比较中断,读取CAPl的栈值 (即T2的初值t2_1),清T1、T2上溢次数,使能CAP3和T3。最后当T3定时结束,借助于D触发器在被测信号的下一个上升沿到来时,切断T1的比较输出,同时PDPINTA将被置位,然后记录T1和T2的上溢次数tlofcount、t2ofcount,读取CAPl的栈值(即T2的末值 t2_2)和CAP3的栈值(即T1的末值tl_2)。由所得数据计算频率,禁止T1、T2、CAPl和CAP3。频率计算公式为:
注意:CAPl的捕获时基为T2,CAP3的捕获时基为T1,标准频率信号为150 MHz时钟频率的8分频。
2.2 系统的软件设计
主监控程序是整个软件系统的总调度程序,它控制着程序的有序运行。系统在上电或复位后,主程序先调用各模块的初始化子程序,主要包括GPIO初始化、PIE初始化、EV初始化和SCI初始化。系统初始化完成之后,主程序启动CPU_Timer0,使能 T1、T2的上溢中断,启动CAPl,设置T1的比较值为1,等待T1CINT置位,开始测量频率。为减小测量过程中产生的随机误差,所测结果均取平均值。利用CPU_Timer0产生一定的时间段(O.6s)。该时段结束后(CPU_TimerO中断标志位置位),即对该段时间段内记录的测量结果求均值。此时,如果查询到上位机发出接收请求,则传送相应数据至PC显示。然,后,重新初始化定时器和捕获单元,进入下一轮测量。主监控程序流程如图3所示。[page]
测频的部分源代码如下:
3 误差分析及测试结果
3.1 量化误差
设被测信号的频率为Fx,其真实值为Fxe,标准频率为Fs,在一次测量中,预置闸门时间为T′,Tpr为实际闸门时间,被测信号计数值为Nx,标准频率信号计数值为Ns。
Fx计数的起停时间是由该信号的上升沿触发的,在T′时间内对Fx的计数Nx无误差,对Fs的计数Ns假设相差N个脉冲,即|△et|≤n。
由于Fx/Nx=Fs/Ns,Fxe/Nx=Fs/(Ns+△et),根据相对误差公式有:
因此可以得到以下结论:
①相对测量误差与被测信号的频率无关。
②增大T′或者提高Fs,可以增大Ns,减少测量误差,提高测量精度。本设计方案中,预置闸门时间限定了最低的测量精度。
③误差分析中的n,主要由硬件切断T1PWM所需要的时间决定,为一个小整型常数。若预置闸门时间Tpr=O.012 8 s,则
即使n取不为l的小整型常数,仍可以使得精度维持在十万分之一以内,并且可以随着预置闸门时间的适当延长,得到进一步的提高。[page]
3.2 测量的原理误差和标准频率误差
本测量原理类似多周期同步测量原理,主要的原理误差来自测量即将结束时,由D触发器产生低电平跳变来切断T1PWM,从而使其产生由CAPl和CAP3同时捕获上升沿的跳变。这段时间主要是由D触发器的反应时间决定。在测量过程中,针对这部分误差,可以通过适当增加预置闸门的时间来克服,同时考虑到DSP 内部高速的时钟频率,这并不会明显地增加测量耗时,但却达到了弱化此误差的影响、增加测量精度的目的。
标准频率误差为△Fs/Fs。因为晶体的稳定度很高,标准频率误差可以进行校准,并且已将DSP内部的高速时钟频率进行了适当的分频,所以相对于量化误差,校准后的标准频率误差可以忽略不计。
3.3 测试结果
用函数信号发生器(型号为Tektronix AFG3010;精度为O.000 1%)产生方波信号,用设计的频率计测出频率,求出误差。本测频系统的测量精度可达到O.01%。根据误差分析可知,系统的最大误差发生在预置闸门时间正好填充了整数个被测信号时,即频率为78.125 Hz或者其整数倍时,所以选择这些点进行测试。实际的测试数据如表1所列。
4 结论
本文着重分析了数字频率计的设计方案、硬件组成,以及采用Modbus协议实现上位机与下位机通信的软件设计。特点有:
①在频率测量原理方面,由于采用了多周期测量原理,消除了对被测信号计数时产生的±1个计数误差,其精度仅与闸门时间和标准频率有关,克服了传统的测频法或测周法的不足,实现了宽量程、高精度的频率测量。同时由于预置闸门时间的存在,保证了当被测频率在各频段之间来回切换时,系统反应灵敏,跟随性能好。
②在系统的总体设计方面,充分利用了F2812 DSP的内部资源,即使用事件管理器中的定时器、捕获单元完成频率的测量;使用PWM的输出实现自检电路的设计;使用串口通信模块完成上位机和下位机的通信。在测量结果的显示方面利用RS232,通信协议采用Modbus协议,实现下位机和上位机的通信,将测量结果在上位机中显示出来。
本文只探讨了如何对单路信号进行频率测量,而对于多路信号,可先使其经过一个与门,通过软件判断哪一路信号,然后再运用本设计方法进行测量。针对这种情况所产生的误差问题还需作进一步的探讨,本文只给出初步的探索。
参考文献
1. 周文水 相位宽带测频原理的研究与实现 [学位论文]
2. 徐科军.李国丽 电气测试基础 2002
3. 张志文.田英峰 基于 DSP的高精度频率测量系统的研究 [期刊论文] -西安工业大学学报2007(2)
4. Texas Instruments Incorporated TMS320F28x DSP Family User's Guide
5. 梁文海 用单片机实现双计数器多周期同步法频率测量 [期刊论文] -现代电子技术2007(7)
6. 郑杰.陶维青 基于 TMS320F2812事件管理器的一种测频方法 [期刊论文] -微计算机信息2006(5)
上一篇:一种高精度数控双极性恒流源电路的设计
下一篇:嵌入式系统的系统测试和可靠性评估
推荐阅读最新更新时间:2024-03-30 22:55
基于DSP的异步电机矢量控制系统设计
0 引言 随着现代控制理论、微处理技术和电力电子技术的不断发展,基于矢量控制的高性能交流传动系统得到广泛的应用。异步电机是一个多变量、强耦合、非线性的时变参数系统,若以转子磁通这一旋转的空间矢量为参考坐标,再利用坐标变换,就可以把定子电流中的励磁分量和转矩分量独立开来分别进行控制。这就是矢量控制的出发点。SVPWM调制技术把逆变器和电机看成一个整体来处理,所得模型简单,便于处理器实时控制,并具有转矩脉动小、噪声低、电压利用率高等优点。本文以TI公司的专用电机控制芯片TMS320F2812为核心,给出了整个异步电机矢量控制系统的设计方案,并通过实验验证了其有效性。 1 异步电机矢量控制原理 矢量控制技术自从上世纪60、
[嵌入式]
基于TMS320F2812的光标阅读机系统
1引言 光标 阅读机 是一种光学标记信息卡录入设备,广泛应用于考试、人口普查、彩票投注、选举等领域。目前在国内外有多种光标阅读机,结构复杂、生产成本高等。本文介绍一种新型的基于DSP TMS32OF2812的光标阅读机系统,该系统具有结构简单、成本低廉的特点,有很强的实用价值。 2硬件结构 光标阅读机硬件一般由LED传感器、ADC、数据处理控制单元、PC机接口、馈纸控制等部分组成,目前常用的光学标记阅读机硬件结构有两种:数据处理控制单元采用工控板方式和数据处理控制单元采用DSP+FlaGA方式。这两种电路比较复杂,生产成本较高。 本文介绍的是数据处理控制单元采用基于TMS320F2812的硬件结构.TMS3
[模拟电子]
TMS320F2812在车辆四轮转向控制系统中的应用
数字信号处理器(Digital Signal Processor,简称DSP), 是一种适合于数字信号处理运算的微处理器,能够实现实时快速的数字信号处理算法。通常,由一个以DSP为基础的内核,配以测量控制所需的外围功能电路,集成在单一芯片内,使芯片价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。因此,集成DSP芯片的多功能板是电机应用、励磁脉冲控制系统、电力保护系统的理想选择。本文采用了超拓工控的CS4U9813可编程智能多功能板作为伺服电机的控制器来实现汽车后轮转向功能,该板集成有TI公司的高性能 DSP芯片 TMS320F2812 。 1 TMS320F2812的结构特点 TMS320F2812是T
[工业控制]
基于DSP的绝对式光电编码器串行接口设计
摘要: 为了实现SSI接口的绝对式光电编码器在电机伺服控制系统中对电机位置的检测,采用了DSP芯片TMS320F2812的通用I/O口模拟SSI接口与绝对式编码器之间的通信,编写了模拟SSI接口通信时序程序并做了绝对式编码器位置检测实验,获得了绝对式编码器全范围的输出值,单圈数值为0~25536,经4 096圈可输出范围0~268 435 456数值。得到了绝对式编码器在电机伺服控制系统中可实现位置精确采集和精确控制以及利用通用I/O口,实现SSI接口通信,其具有设计简单、成本低、易维护、位置检测精确以及可替代专用解码芯片的特点。 关键词: 绝对编码器;DSP;串行通信SSI;TMS320F2812 0 引言 在电机伺
[嵌入式]
TMS320F2812片内Flash在线烧写技术
TMS320F2812(以下简称F2812)是美国德州仪器公司(TI)新一代32位定点数字信号处理器(DSP),主要应用于逆变器控制、电机控制等领域,并拥有工作频率高达150 MHz的32位DSP内核处理器,可以高效可靠地实现自适应控制和状态控制等。因此,TMS320F28X系列DSP已成为自动控制领域的首选控制器件。F2812片内拥有高达128 KBx16位的F1ash程序存储器,可以满足大多数程序存储需要。在研究基于JTAG接口的两种常用Flash烧写技术(CCS插件烧写技术和Flash281x_API函数库烧写技术)的基础上,提出了一种利用RS485与PC机的串行通讯实现Flash烧写的方法。 片内Flash简
[单片机]
基于TMS320F2812的三电平逆变器载波调制方法研究
主要对二极管箝位型三电平逆变器的拓扑与 控制 进行了研究,并以此作为进一步研究的基础,对三电平NPC逆变器的载波同相层叠和反相层叠PWM 控制 方法进行了分析,同时对两种载波层叠方式下输出电压的谐波特性进行了比较,分析了其工作机理和调制算法,在此基础上对基于三角载波层叠式调制算法的实现进行了改进,然后利用Matlab/Simulink仿真软件实现了调制算法的仿真验证,给出了基于先进TMS3-20F2812DSP设计改进的三角载波层叠式调制方法的控制程序。结果表明,该调制算法非常适用于新型DSP数字化控制软件的实现,控制性能稳定,能获得带死区功能的控制脉冲。 关键词:三电平逆变器;二极管箝位;载波层叠式PWM O 引言 二极管
[模拟电子]
基于TMS320F2812和ADS8364的智能节点设计
摘要:介绍了以 TMS320F2812 和 ADS8364 为核心的智能节点设计,该节点不仅可以进行数据采集,还可以实现阚值报警、数字滤波、FFT变换等功能。并详细介绍了本设计的工作原理、硬件设计以及软件设计。 关键词:DSP;CAN总线:智能节点 0 引言 在实际工程应用中,经常需要对各种设备进行状态监测和故障诊断,首先要对各传感器的信号进行采集,为了减轻上位机的运算负荷,设计了一种基于DSP的智能节点,主要用来实现信号采集和FFT变换等功能。 1 硬件设计 智能节点的硬件主要包括DSP处理器、模数转换器、扩展的静态存储器、电平转换芯片、CAN接口驱动、光电耦合输入和传感器调理及电源电路等。 DSP处理器选用TI
[工业控制]
基于TMS320F2812的最小系统设计
TMS320F2812是美国TI公司推出的新一代32位定点数字信号处理器,该芯片每秒可执行1.5亿次指令,具有单周期32 bit×32 bit的乘和累加操作功能,片内集成了丰富的外围设备,如16路A/D转换器、面向电机控制的事件管理器以及多种标准串口通信外设等 。可见,其不仅具有数字信号处理器卓越的数据处理能力,又像单片机那样具有适于控制的片内外设及接口;它在数字控制系统中有着广泛的应用,特别是在运动控制领域以及嵌入式开发系统设计中,常常成为微处理器的首选。 DSP最小应用系统设计一般包括硬件设计和调试部分。硬件设计部分一般包括电源、复位电路、时钟电路、JTAG电路和外部接口电路的设计;最小系统板作为DSP控制系统的核心
[嵌入式]