示波器探头基础入门指南(上)

发布者:数据探险家最新更新时间:2015-05-12 来源: ednchina关键字:示波器  探头基础  入门指南 手机看文章 扫描二维码
随时随地手机看文章
示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。很多工程师很看重示波器的选择,却容易忽略对示波器探头的甄别。试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。所以正确了解探头性能,有效规避探头使用误区对我们日常使用示波器来说至关重要!

 

在绝大多数示波器测量环境下,我们都需要使用探头。示波器探头有很多种,内部原理构造迥异,使用方法也各不相同。本文主要给大家介绍示波器探头的种类及工作原理,探头使用过程注意事项以及如何选择示波器探头。

 

1 示波器探头种类及工作原理

对于DC直流或一般低频信号而言,示波器探头只是一个由特定阻抗R所形成的一段传输线缆。而随着待测信号频率的增加和不规则性,示波器探头在测量过程中会引入寄生电容C以及电感L,寄生电容会衰减信号的高频成分,使信号的上升沿变缓。寄生电感则会与寄生电容一起构成谐振回路,使信号产生谐振现象。所有这些都会对我们测量信号的准确性带来挑战。

pic_01.jpg

图1 探头电气特性示意图

 

示波器探头按供电方式分可分为无源探头和有源探头。无源探头又分为无源低压、无源高压及低阻传输线探头等,有源探头又分为有源单端、有源差分、高压差分探头等。此外,在一些特殊应用下,还会使用到电流探头(AC、DC)、近场探头、逻辑探头以及各类传感器(光、温度、振动)探头等。

 

无源探头是最常用的一类电压探头,也是我们在购买示波器时标配赠送的探头。如图2所示。
 

pic_02.jpg

 图2 无源探头示意图

 

无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。

 

图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。此类无源探头一般输入阻抗为10MΩ,衰减比因子为10:1。

pic_03.jpg

 图3无源探头原理图

 

在使用此类探头时,示波器的输入阻抗会自动设置为高阻1MΩ。此时示波器BNC通道输入点的电压Vscope与探头前端所探测的电压值Vprobe的关系满足以下对应关系:

Vprobe/Vscope = (9MΩ + 1MΩ) / 1MΩ = 10 : 1

由关系式可知,示波器得到的电压是探头探测到电压的十分之一,这也是无源探头10:1衰减因子的由来。无源探头具备高阻抗10MΩ,因此它对待测电路的负载效应(将在第二部分详述)很小,能覆盖一般低频频段(500MHz以内),耐压能力强(300V-400Vrms),价格便宜,通用性好,所以得到广泛使用。

 

当无源探头的衰减因子为100:1、1000:1甚至更高时,此类探头一般归类为无源高压探头。由于其衰减比很大,因此能测量高压、超高压电信号。
 

pic_04.jpg

 图4 R&S RT-ZH10高压探头

 

还有一类无源探头,其衰减比为1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。由于不像10:1衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。

pic_05.jpg

图5 R&S HZ-154 1:1/10:1可调衰减比无源探头

 

无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带宽更高,可达数GHz以上。图6为输入阻抗为500Ω的10:1无源传输线探头原理图:

pic_06.jpg

图6传输线探头原理图

 

传输线探头具备低寄生电容,低输入阻抗的特性,一般用来测量高频信号。在使用传输线探头时应该注意将示波器输入阻抗设置为50Ω,以与传输线50Ω阻抗相匹配,传输线探头的典型应用为测量50Ω传输线上的电信号,通过SMA-N等不同的转换接头,传输线探头也可用在频谱分析仪等其它测试设备上。[page]
 

pic_07.jpg

图7传输线探头的典型应用

 

需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。因此,此类探头仅适用于与低输出阻抗(几十至100欧姆)的电路测试。对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。
 

pic_08.jpg
图8 R&S RT-ZZ80 8.0GHz无源传输线探头
      
介绍完无源探头,我们接下来看看有源探头。顾名思义,有源探头区别于无源探头最大的特点是“有源”,即它需要提供电源才能工作。如今大多数有源探头都配备有特殊借口,通过与示波器连接从示波器获得电源,而不需要额外提供外置电源(某些型号除外)。下图所示为有源单端探头原理图:
pic_09.jpg
 图9 有源单端探头原理图

 

有源单端探头一般具备高阻抗(1MΩ上下),低寄生电容。其前端有一个高带宽的放大器,有源探头的供电主要用于此放大器。放大器驱动信号经过50Ω传输线到达示波器,示波器的输入阻抗需选择为50Ω作匹配。由于其较低的寄生电容和50欧姆传输,有源单端探头可以提供比无源探头更高的带宽,因此主要应用在高频信号的测量领域。

 

优点和缺点往往是并存的,有源单端探头亦是如此。能够测量更高带宽的信号是其优点,但由于需要集成有源放大器,因而其成本相对于无源探头来说更高,一个几GHz带宽的有源单端探头价格可达数万人民币。除此之外,由于高带宽放大器的信号输入范围十分有限,因而其动态范围有限,一般有源单端探头的动态范围仅在几伏范围之内,探头所能承受的最大电压也只有几十伏。

 

相对于前面所说的无源传输线探头,有源单端探头同样可以应用在低阻抗高频率信号的测量环境,且由于其输入阻抗相对于无源传输线探头更高,因此它的负载效应更小。不仅如此,R&S有源单端探头还可以与RT-ZA9(N型转换接头,USB供电)附件连接,进而用在射频信号源和频谱分析仪上,用来测试特殊环境下的信号,如传统50欧姆同轴线缆无法连接的探测点处,或者需要使用高阻探头探测待测点信号频谱时。
 

pic_10.jpg

图10 R&S RT-ZS系列单端有源探头与RT-ZA9 N型转换头相连

 

除了有源单端探头之外,有源差分探头是另外一类重要的有源探头。我们可以从字面上来理解这两种探头的区别,有源单端的前端有两处连接点:信号点和地。有源差分顾名思义主要用来测试差分信号,探头前端有三处连接点:信号正、信号负、地。

pic_11.jpg

图11 有源单端探头前端(左)与有源差分探头前端(右)

 

有源差分探头的原理图如下:
 

pic_12.jpg

图12有源差分探头原理图
 

与有源单端探头相比,其最大不同在于使用了差分放大器。有源差分探头同样具备低寄生电容和高带宽特性,所不同的是,有源差分探头具有高共模抑制比(CMRR),对共模噪声的抑制能力比较强。有源差分探头主要用来测试差分信号,即测试两路信号(一般为相位相差180度的正反信号)的相对电压差,与地无关。
 

pic_13.jpg

 图13差分信号测试原理示意图

 

上图显示了用有源差分探头测试差分信号的原理,图中红色波形显示的为差分信号Vin+,蓝色波形显示为差分信号Vin-,二者幅度相同,相位相差180度。Vin+和Vin-经由差分探头正、负探测点探测后经过差分放大器放大,然后传输至示波器,最后得到如图绿色差分波形。[page]

 

这里要介绍几个概念,以便大家能够更好的理解共模抑制比CMRR。

 

共模(Common Mode):差分信号两端具有相同幅度和相位的信号成分,用表达式表示为Vcm =(Vin+ + Vin-)/2.

 

由于理想的Vin+、Vin-幅度相同,相位相反,所以二者相加应该为零。但在实际工作环境下,Vin+、Vin-上会叠加上噪声干扰Vnoise。由于Vin+、Vin-所处环境相同,因而在二者上叠加的噪声也往往相同,所以由CM表达式可知:CM = Vnoise.

 

差模(Differential Mode):差分信号两端不同的信号成分,用表达式表示为Vdm = Vin+ - Vin-.

 

共模抑制(Common Mode Rejection):差分放大器对共模信号的抑制能力,即差分放大器的一项主要能力是对Vnoise进行抑制消除。如果共模电压Vcm经过差分放大器的增益为Acm,差模电压Vdm经过差分放大器的增益为Adm,则我们可以用共模抑制比(Common Mode Rejection Ratio)即CMRR来表示共模抑制能力,其表达式为:

CMRR = Adm / Acm

举例如下图:差模信号Vdm幅度为1V,经过差分放大器后幅度为2V,即Adm = 2. 共模信号Vcm幅度为4.5V,经过差分放大器后幅度抑制为0.45V,即Acm=0.1. 因此,CMRR = 2 / 0.1 = 20:1 = 26dB。
 

pic_14.jpg

图14 差分信号测试举例
 

对于理想的差分放大器而言,我们希望其完全抑制共模信号,从而消除噪声Vnoise对差分信号测量的影响。对于一般的差分信号测量而言,20dB的CMRR已经足够,而R&S RT-ZD40的CMRR可达50dB,性能非常优异。
 

pic_15.jpg

图15 R&S RT-ZD40有源差分探头

 

值得一提的是,R&S的有源单端探头和有源差分探头上都配备了MicroButton多功能按钮和ProbeMeter探头计功能。其中,MicroButton是位于有源探头前段的一个微型按钮,用户可以在测试时很方便的按动按钮,从而执行对示波器的特定控制(可自定义),如:自动设置、默认设置、单次运行、连续运行等。
 

pic_16.jpg

图16 MicroButton多功能按钮

 

ProbeMeter则是集成在有源探头前端的16位DC电压计,可用来直接在探头点处测试直流电压,这与其他厂家使用探头捕获波形然后输送到示波器,进而对波形进行测量得到DC数值的方案完全不同。很显然,ProbeMeter摒除了探头传输的失真影响,从而具备了0.1%的高精准度。在使用差分探头时,可以借助此功能方便快捷查看单端、共模、差模电压数值。
 

pic_17.jpg

图17 ProbeMeter探头电压计
 

有源差分探头可用于绝大多数较小幅度差分信号的测量,但对于幅度达上百甚至上千幅的高压差分信号而言,有源查分探头就显得力不从心了。此时我们只能借助于高压差分探头的帮忙,相对于一般差分探头而言,高压差分探头具有更高的动态范围,能够承受更高的电压。
 

pic_18.jpg

图18 R&S RT-ZD01 ±1400V 高压差分探头

 

高压差分探头相对于无源高压探头而言价格昂贵,因此有用户在测试高压差分信号时会选择将示波器的电源接地线剪断,使示波器“浮起来”进行测试,这是非常危险的,一定要杜绝此类行为。我们将在第二部分详细说明。

 

电流探头严格意义上说也属于有源探头的一种,几乎所有的电流探头在使用过程中都需要供电。电流探头主要分为三类:AC(仅能测试交流电)、DC(仅能测试直流电)、AC+DC。而目前大多数电流探头都具备了AC+DC的测量功能。[page]

 

电流探头的原理如下,主要是利用电磁效应(AC测量)和霍尔效应(DC测量)。
 

pic_19.jpg

图19 AC+DC电流探头原理图

 

当有AC电流经过导线穿过电流探头的前段闭合钳口时,会有相应磁场产生,通过磁场的强弱直接感应到电流探头的线圈。探头就象一个电流变压器,系统直接测量的是感应电流。

 

如果是DC或者低频电流,当电流钳闭合后,电流导线附近会出现一个磁场。磁场使霍尔传感器内的电子发生偏转,在霍尔传感器的输出产生一个电压。系统根据这个电压产生一个反相(补偿)电流至电流探头的线圈,使电流钳中的磁场为零,防止磁饱和。系统根据反相电流测得实际得电流值。

 

电流探头的选择主要依据其测量带宽、量程以及钳口直径等。


MSO数字逻辑探头在数字逻辑测试中会经常使用,与一般8bit模拟探头相比,数字逻辑探头根据示波器所设置的判决门线电平,将捕获的电压按照0、1跳变(1bit)的数字信号在屏幕上显示出来。用户可以根据多路数字信号的逻辑电平及关系来判断逻辑电路的性能。
 

pic_20.jpg

图20 R&S RTO-B1数字逻辑探头

 

EMI近场探头是另一类特殊的探头类型,它实际使用了天线接收原理,用来捕获电路板上空间辐射的电磁场干扰,特别是在系统集成中做EMI电磁干扰的诊断。
 

pic_21.jpg

图21 EMI近场探头示意图

 

除了以上给大家介绍的各种探头之外,还有光探头、温度传感探头及其他各类传感探头等。原则上来说,任何一款能够将各物理量转换成电压信号并具备与示波器互连能力的传感器都可以作为示波器探头,用户可以根据具体使用环境和需求选择适合的探头类型。

关键字:示波器  探头基础  入门指南 引用地址:示波器探头基础入门指南(上)

上一篇:示波器探头基础系列之五《为什么进行差分测量?》
下一篇:某医疗设备中放大器低频信号的测试

推荐阅读最新更新时间:2024-03-30 22:57

ZDS2022示波器百集实操视频之46:Wiegand协议的触发
大家好,上期视频跟大家分享了Wiegand协议的解码,在协议解码的基础上,观察协议的触发波形更有价值!今天我们就来聊聊Wiegand协议的触发功能。 按下【Trigger】键,将触发方式设为普通,在协议解码中开启协议触发后,触发类型会自动设为Wiegand协议,在“协议参数”中设置协议触发参数,DATA0设为通道1,DATA1设为通道2,ZDS2022示波器Wiegand协议类型可设置为26位、39位、44位和自定义,系统默认设为26位,位最大间隔是输入两个数据之间允许的最大间隔,设置范围为0.00ns~1.00s,默认为10.0ms,最大位间隔的设置意义在于要判断帧的完整性,当空闲电平时间超过该值时视作帧结束。 触发模式
[测试测量]
ZDS2022<font color='red'>示波器</font>百集实操视频之46:Wiegand协议的触发
示波器“真正意义”的测量统计功能
  大家好,示波器作为一种通用的测量仪器,它的老本行其实还是测量统计功能,放置在您实验台上的示波器,您可能使用过很多次,使用过很多功能,但是您真正地留意过它的本行测量统计功能吗?该功能真正可用、真正可靠吗?   ZDS2022示波器在具有大多数示波器都有的功能后,着实地对测量、统计功能进行了用心设计与功能体验,不仅加入了51种测量参数项,并且可以同时实时显示24种参数测量结果。采用全硬件参数测量,速度非常快。而且,每一种参数项均可测出当前值、最大值、最小值、平均值和标准差多种数据类型。您可以通过观察统计的最大值和最小值可快速了解波形中可能存在的异常,通过观察平均值、标准差可快速评估信号特性。当然还包括计数,您可以通过统计的coun
[测试测量]
<font color='red'>示波器</font>“真正意义”的测量统计功能
存储示波器和存储记录仪的区别
  存储示波器是通过输入信号A/D,将数据存于内存,然后显示波形的测量仪器。   存储记录仪与存储示波器不同如下:   1、绝缘隔离   与存储示波器的最大不同点在于输入的绝缘隔离。   存储示波器的各输入GND是共同且内部相连的,而存储记录仪的任一通道的输入(H输入、L输入)和其他通道的输入绝缘隔离的。为此,在测量多个的不同回路的电压时,存储示波器需要各种各样的技术方法和特殊的放大器等,存储记录仪则不必考虑这些,直接将H、L端子连接到想要测量的回路即可进行测量。   2、输入分辨率   历来存储示波器是按照可进行高速估样的要求设计的,输入分辨率只具备在显示器上观测时的最低限的分辨率(8位)。相反,存储记录仪却可进行低速现象的高分
[测试测量]
示波器探头接在示波器的测试信号输出端上
首先是带宽,照度仪这个通常会在探头上写明,多少MHz。如果探头的带宽不够,熙源泰气体检测仪网的带宽再高也是无用,瓶颈效应。 另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。数字风速仪它们是用来调节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用
[测试测量]
汽修示波器测量汽车冷却液温度传感器信号及分析
发动机冷却液温度传感器又称为水温传感器,其传感器器件一般是安装在发动机缸体、缸盖的水套或者节温器内并伸入水套中。冷却液温度传感器其作用是用于检测发动机冷却液的温度,发动机电子控制元件ECU根据该信号对喷射时间、点火时刻、怠速转速等进行相应的调节,同时也会作为其他控制系统如控制风扇的离合器等的控制信号。 我们来看下示波器如何连接冷却液温度传感器。冷却液温度传感器一般分两条线,一条电源线,一条接地线。我们给示波器的一个通道接上一根BNC转香蕉头线。红色香蕉头接上一根刺针,黑色香蕉头接上一个鳄鱼夹。黑色鳄鱼夹搭铁接地,红色刺针就刺入冷却液温度传感器的电源线。 启动汽车发动机,然后把示波器时基打到至少50s,调节示波器的垂直档位,
[测试测量]
汽修<font color='red'>示波器</font>测量汽车冷却液温度传感器信号及分析
泰克公司在高速示波器中采用200 GHz SiGe技术
泰克公司日前宣布,其下一代、可扩展、高性能示波器平台将广泛采用IBM 8HP硅锗 (SiGe) 技术,再次证明其致力于帮助全球工程师加速未来设计方案的调试与测试工作。130纳米(nm)硅锗双极互补金属氧化物半导体(BiCMOS) foundry工艺提供了两倍于前代工艺技术的性能,能帮助推出实时带宽超过30 GHz的示波器产品。 “泰克公司与IBM拥有长期的合作创新历史,在我们的产品中采用SiGe技术使我们推出了一系列世界级的获奖仪器,并帮助解决了一些最迫切的客户挑战”,泰克公司高性能示波器总经理Brian Reich指出,“出色的SiGe技术性能,加上IBM稳健可靠的SiGe制造实力,这将使我们的下一代示波器采集性能
[测试测量]
如何校准示波器探头
通常,校准探头软件将指导您完成探头校准过程。 对于某些有源探头,示波器可针对探头准确地校准其模拟通道。如果连接了可校准的探头, 通道探头菜单 中的校准探头软键将激活。 本次选用的探头是普科高压差分探头PKD5050: 1 首先,将探头插入示波器的其中一个通道。 例如,可能是连接了衰减器的探头放大器/探头。 2 将探头连接至左侧,演示2,探头补偿端子,探头接地连接至接地端子。 注意:校准差分探头时,将正导线连接到探头补偿端子,将负导线连接到接地端子。此外还需要将弹簧夹连接到接地接线片上,以使差分探头横跨探头补偿测试点和接地处。良好的接地连接可确保得到最准确的探头校准。 3 按下 通道打开/关闭 键以打开通道(如果通道已关闭)
[测试测量]
如何校准<font color='red'>示波器</font><font color='red'>探头</font>
基于STC12C5408AD的记忆示波器
1 引言 示波器是电子测量的基本仪器。由于其具有图形显示实时、直观和形象等特性,在一般的物理实验室中它也是常用仪器之一。众所周知,示波器是依据输入电压调制的电子束扫描、荧屏余辉以及人眼的暂留效应等原理制成的;它要求输入周期信号;对于非周期性的信号,普通示波器是无能为力的,必须使用具有记忆功能的专用示波器,但这种示波器价格高昂,一般的物理实验室无法大量配置。 信息时代,个人计算机大量普及。普通物理实验室以及一般的中学都已配备了大量的计算机(以下称PC)。但这些PC大都用于文字信息处理和计算工作,其内在的功能还远远没有发挥,实际上造成了巨大的浪费。 我们知道,PC具有很强的图像显示功能。如果能够开发、利用这一功能,配上外部接口电
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved