虚拟仪器(virtual instrumention)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。下面的框图反映了常见的虚拟仪器方案。
虚拟仪器的主要特点有:
1.、尽可能采用了通用的硬件,各种仪器的差异主要是软件。
2、 可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。
3、 用户可以根据自己的需要定义和制造各种仪器。
虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的LabVIEW。
虚拟仪器的起源可以追朔到20世纪70年代,那时计算机测控系统在国防、航天等领域已经有了相当的发展。PC机出现以后,仪器级的计算机化成为可能,甚至在Microsoft公司的Windows诞生之前,NI公司已经在Macintosh计算机上推出了LabVIEW2.0以前的版本。对虚拟仪器和LabVIEW长期、系统、有效的研究开发使得该公司成为业界公认的权威。
普通的PC有一些不可避免的弱点。用它构建的虚拟仪器或计算机测试系统性能不可能太高。目前作为计算机化仪器的一个重要发展方向是制定了VXI标准,这是一种插卡式的仪器。每一种仪器是一个插卡,为了保证仪器的性能,又采用了较多的硬件,但这些卡式仪器本身都没有面板,其面板仍然用虚拟的方式在计算机屏幕上出现。这些卡插入标准的VXI机箱,再与计算机相连,就组成了一个测试系统。VXI仪器价格昂贵,目前又推出了一种较为便宜的PXI标准仪器。
虚拟仪器研究的另一个问题是各种标准仪器的互连及与计算机的连接。目前使用较多的是IEEE 488或GPIB协议。未来的仪器也应当是网络化的。
LabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。它还内置了便于应用TCP/IP、ActiveX等软件标准的库函数。这是一个功能强大且灵活的软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。
图形化的程序语言,又称为“G”语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图或流程图。它尽可能利用了技术人员、科学家、工程师所熟悉的术语、图标和概念,因此,LabVIEW是一个面向最终用户的工具。它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。
利用LabVIEW,可产生独立运行的可执行文件,它是一个真正的32位编译器。
关键字:labview 虚拟仪器
引用地址:
labview入门
推荐阅读最新更新时间:2024-03-30 22:58
LabVIEW的工具选板
工具选板提供了VI程序设计时可以选用的基本工具,如图2所示,在前面板和程序框图窗口均可打开使用。单击选板右上角 可关闭工具选板。在前面板或程序框图窗口的空白区域按下 Shift+鼠标右键 ,也可弹出临时工具选板。 图:工具选板 表:工具选板中的工具及其功能
[测试测量]
基于Labview的幅值和相位差测量
比较两个正弦信号的幅值和相位差广泛应用于对比测试中,如与标准信号进行标定、滤波前后信号的比对、互感器的输出等方面。时域波形可以依靠示波器观察,幅值和相位信息需要频谱分析仪测定,但其仅能对一路信号进行测试。而对于相位差的测试,一般使用动态分析仪这样的高精度仪器进行分析。频谱分析仪和动态分析仪的价位较高,因此有必要使用基于采集卡的Labview开发这方面的测试功能。 Labview中有现成的信号处理的vi(图1),可以直接分析出信号的幅值和相位信息。对两个信号可以分别得到相关信息,然后做差。 频谱测试vi 由FFT的原理可以知道,经过FFT运算,采集获得的序列变成复数,有实部和虚部。而实部和虚部的平方再开方对应的是幅值,虚部
[测试测量]
基于Labview的ICRH发射机监控系统的开发
1. 引言 我国第一个超导托卡马克HT-7装置,是一个庞大的核聚变环形真空磁笼实验装置,它主要包括HT-7超导托卡马克装置本体,大型超高真空系统,大型计算机控制和 数据采集 处理系统,大型高功率脉冲电源及其回路系统,有全国规模最大的低温液氦系统,兆瓦级低杂波电流驱动和射频波加热系统,以及数十种复杂的诊断测量系统等。核聚变研究的重要目的之一就是设法把等离子体加热到10keV以上。离子回旋波加热主要是通过天线将波的能量馈入到等离子体中。本文主要介绍了基于Labview的离子回旋共振加热发射机实时 监控系统 ,对设备的电参数进行监测,并按要求对射频波形进行反馈控制;要检测的信号包括模拟电压、开关信号、脉冲信号,同时对信号进行快慢采集,并保
[测试测量]
基于LabVIEW软件和PXI仪器的能源存储恒电位仪
挑战:开发一个具有易用软件具有用户友好界面、高精度和高分辨率、多频模式、低电流选项,和电子邮件/文本通知功能的恒电位仪电位/恒流器电流/阻抗分析仪系统(电位系统) 解决方案:基于LabVIEW软件和PXI仪器,使用恒电位仪来确定电池,电容和燃料电池等设备的能源存储,额定功率和内阻。 使用先进的NI模块化仪器技术,SolRayo ETS可以达到或超过现有商用设备的速度和精度。同时,一个美观的,友好的用户界面大大提高了设备的可用性。 可再生能源是当今世界上增长最快的市场之一。能源存储技术在风能、太阳能和生物能等“绿色”能量产生源中起着重要的作用。应用于能源存储的公共和个人资金正在暴涨,使大量前所未有的研究
[测试测量]
利用CompactRIO和LabVIEW控制心脏模拟器
利用NI CompactRIO创建一个独立的硬件在环(HIL)测试环境。该测试环境可以把人工机械心脏与循环血流模型相结合,创造一个包含真实血液动力环境的生动的解决方案。 "CompactRIO提供了一个坚固、可靠、独立的平台,使我们的团队能够进行持续性测试,这在普通的计算机上是不可能实现的。" 由心脏病导致的死亡占发达国家所有死亡人口的将近一半。心脏移植仍然是治疗心脏病最有效的方式,但捐献的器官远远及不上需求。为了解决这种不平衡情况,目前人们正在研究使用。利兹大学正在开发的一种新颖的机械人工心脏辅助装置被命名为智能心室辅助装置(iVAD)。该装置能够作为人造肌肉包覆心脏,通过在心脏心室外表面周围施加与自然节
[工业控制]
使用LabVIEW和NI硬件精确安全地测量胎儿心率
挑战: 设计一个低功率光学胎心率监听仪,以避免使用超声波对胎儿造成的伤害。 解决方案: 使用NI LabVIEW软件和NI硬件设计,利用高级数字信号处理技术设计一个胎心率监护仪。 “采用LabVIEW,我们成功实现了数字同步检测和自适应滤波技术” 胎心率(FHR)检测是一种用于胎儿出生前判断胎儿健康状况,并帮助识别胎儿缺氧或受压迫等潜在危险的主要方法。早期检测的目的是为了降低胎儿发病率和死亡率。 目前,胎心率探测最常用的方式是多普勒超声波,标准的产前胎儿健康测试为胎儿无负荷试验(NST)。这些测试通常在有连续波仪器的医院内完成。 尽管目前的超声波胎心率检测仪有了很大的改进,价格不断降低,体积也更加小巧,我们仍
[测试测量]
LabVIEW编程小技巧
1 快捷方式 快捷键 功能 Ctrl+B 从流程图中一曲所有的坏线 Ctrl+E 在前面板和流程图窗口之间转换 Ctrl+F 寻找一个LabVIEW对象或文字 Ctrl+H 显示或者隐藏帮助窗口 Ctrl+N 生成一个新的VI Ctrl+Q 退出LabVIEW Ctrl+R 运行当前VI Ctrl+W 关闭当前VI Ctrl+.(是个圆点) 停止当前正在执行的VI 2 改变连线方向 连线的时候,如果想改变邹县的防线,如果将先水平再垂直走的连线改成先垂直后水平走的连线,只要按一下空格键就可以了。 3 取消连线操作 如果想取消正在连接的线,单击鼠标右键就
[测试测量]
BMW 氢能7系采用虚拟仪器技术进行测试
汽车正朝着更智能、更安全、多能源和高效清洁的方向发展。在目前,车用主流燃料仍为汽油和柴油,均为不可再生能源,其燃烧后产生对环境有污染的气体。全世界范围内都正在着力研究车用新能源。在我国,“十一五”863计划中专门启动了“节能与新能源汽车”重大科技项目,研究燃料电池汽车、混合动力汽车、电动汽车、氢能汽车等。简言之,环境保护和清洁汽车,是全人类的一个共同课题,也是一个热门话题。 2007年6月,宝马集团推出了世界第一款氢动力豪华高性能轿车BMW氢能7系,这款供日常使用、几近零排放汽车的诞生,是整个汽车和能源行业向不依赖矿物燃料的可持续发展时代迈进的一个里程碑。尽管目前制氢技术和能耗问题有待改进,但氢燃烧后的副产品为水
[测试测量]