确定静电放电和电气快速瞬变的阈值

发布者:CuriousTraveler最新更新时间:2015-07-08 来源: dzsc关键字:静电放电  快速瞬变  阈值 手机看文章 扫描二维码
随时随地手机看文章
  辐射抗扰度和传导抗扰度测试的业界标准要求采用示波器来验证由静电放电(ESD)和电磁耦合发生器产生的脉冲波形和脉冲测量参数,如上升时间、下降时间及脉冲宽度。然而,由于在EMC测试标准中采用的脉冲波形的原因,示波器参数历来都无法准确测量这些参数。传统的脉冲测量需要仪器来确定脉冲的稳态高值(顶部)及脉冲的稳态低值(底部)。采用电压柱状图来确定顶部和底部这两个突出的模式。用来计算脉冲参数(如上升时间、下降时间及脉冲宽度)的阈值水平是根据顶部和底部的值来导出的。例如,上升时间测量中的阈值(定义为信号从10% 跃变到90%的时间)是取决于底部和顶部所定义的0%和100%水平。

  考查图1中的电气快速瞬变(EFT)脉冲。此脉冲特性不符合IEEE脉冲参数的定义,这是因为此EFT脉冲没有高、低稳态值。波形以线性快速升高到一尖峰之后,随后以指数趋向渐近线衰减,但不是很快到达此渐近线。没有稳态值时,EFT脉冲会产生不确定的底部和顶部的值。因为要计算上升时间、下降时间及脉冲宽度所用的阈值,就必须确定底部和顶部的值,如果使用传统的示波器脉冲参数,测量就无效了。

 

  EMC脉冲测量要求阈值设定为0%和最大值(其中最大值为波形的峰电压水平),而不是顶部和底部,来满足测量规范。在过去几年间,现代示波器采用阈值设定为峰-峰、0%到最大值以及0%到最小值,以及标准绝对水平或百分比水平,已经开始可以进行EMC脉冲参数测量了。

  图2中获取了一个静态放电波形。加或不加EMC阈值都测量到了脉冲宽度和上升时间。在参数1(P1)中,阈值设定为0%最大值,脉冲宽度正确测定为2.109纳秒。在参数2(P2)中,阈值设定为标准示波器顶部和底部的50%。在这种情况下,测量错误的报告为50.348纳秒,误差达2287%。宽度测量受到的影响非常大,顶部和底部的50%阈值实际上根据错误的脉冲波形得到宽度测量值。参数3(P3)设定为正确的0%到最大EMC阈值,得到的静电脉冲上升时间测量值833皮秒是正确的。注意:在参数4(P4)中,标准上升时间错误报告为873皮秒。使用标准脉冲参数测量时,可能得到错误值。同时要注意,除正确测量图2中的参数P1和P3之外,采用EFT脉冲的0%最大值阈值,也正确计算出了图1所示的测量参数P1和P2。

 

  辐射抗扰度和传导抗扰度测试的业界标准要求采用示波器来验证由静电放电(ESD)和电磁耦合发生器产生的脉冲波形和脉冲测量参数,如上升时间、下降时间及脉冲宽度。然而,由于在EMC测试标准中采用的脉冲波形的原因,示波器参数历来都无法准确测量这些参数。传统的脉冲测量需要仪器来确定脉冲的稳态高值(顶部)及脉冲的稳态低值(底部)。采用电压柱状图来确定顶部和底部这两个突出的模式。用来计算脉冲参数(如上升时间、下降时间及脉冲宽度)的阈值水平是根据顶部和底部的值来导出的。例如,上升时间测量中的阈值(定义为信号从10% 跃变到90%的时间)是取决于底部和顶部所定义的0%和100%水平。

  考查图1中的电气快速瞬变(EFT)脉冲。此脉冲特性不符合IEEE脉冲参数的定义,这是因为此EFT脉冲没有高、低稳态值。波形以线性快速升高到一尖峰之后,随后以指数趋向渐近线衰减,但不是很快到达此渐近线。没有稳态值时,EFT脉冲会产生不确定的底部和顶部的值。因为要计算上升时间、下降时间及脉冲宽度所用的阈值,就必须确定底部和顶部的值,如果使用传统的示波器脉冲参数,测量就无效了。

  EMC脉冲测量要求阈值设定为0%和最大值(其中最大值为波形的峰电压水平),而不是顶部和底部,来满足测量规范。在过去几年间,现代示波器采用阈值设定为峰-峰、0%到最大值以及0%到最小值,以及标准绝对水平或百分比水平,已经开始可以进行EMC脉冲参数测量了。

  图2中获取了一个静态放电波形。加或不加EMC阈值都测量到了脉冲宽度和上升时间。在参数1(P1)中,阈值设定为0%最大值,脉冲宽度正确测定为2.109纳秒。在参数2(P2)中,阈值设定为标准示波器顶部和底部的50%。在这种情况下,测量错误的报告为50.348纳秒,误差达2287%。宽度测量受到的影响非常大,顶部和底部的50%阈值实际上根据错误的脉冲波形得到宽度测量值。参数3(P3)设定为正确的0%到最大EMC阈值,得到的静电脉冲上升时间测量值833皮秒是正确的。注意:在参数4(P4)中,标准上升时间错误报告为873皮秒。使用标准脉冲参数测量时,可能得到错误值。同时要注意,除正确测量图2中的参数P1和P3之外,采用EFT脉冲的0%最大值阈值,也正确计算出了图1所示的测量参数P1和P2。

  另外还要注意,因为EMC脉冲下降沿常存在脉冲扰动,采用标准参数时,可能导致测量读数错误。譬如,如果下降沿存在屡次穿过阈值的振铃,就可能得到多个错误宽度读数。为此,采集时需要有可以限制示波器测量数的测量滤波功能。现代示波器有这一滤波功能,此功能可以忽略掉脉冲下降沿类似脉冲的扰动,并将其从测量结果中排除掉。

  总之,要准确测量静电放电、电气快速瞬变、浪涌、电压跌落及中断这些脉冲参数,要求有非标准测量功能。选择正确的测量阈值可以使这些信号的测量准确度大为不同。

关键字:静电放电  快速瞬变  阈值 引用地址:确定静电放电和电气快速瞬变的阈值

上一篇:利用VC++模拟示波器实现简谐振动的合成
下一篇:怎样选择示波器采样率

推荐阅读最新更新时间:2024-03-30 23:00

安森美半导体推出业界最薄ESD保护阵列
2008 年 9 月 26 日 , - 安森美半导体推出低电容静电放电 (ESD) 保护产品线的两款新产品—— NUP4016 和 ESD 11L 5.0D 。这些新产品采用安森美半导体获得专利的先进集成 ESD 保护平台,增强钳位性能,并维持超低电容和极小裸片尺寸。新器件的超小型封装厚度比此前版本封装低 20% ,是需要在超薄封装中提供优异保护性能的手机、 MP3 播放器、平板显示器和其它高速通信等便携应用的极佳保护器件。 安森美半导体数字消费产品部副总裁兼总经理 Manor Narayanan 说:“便携电子产品的体积不断缩小,但却要提供更多的功能,这已经不是新闻。真正的新闻是半导体公司的方案
[模拟电子]
安森美半导体推出业界最薄<font color='red'>ESD</font>保护阵列
Nexperia超低结电容ESD保护二极管保护汽车数据接口
可靠的保护器件可大幅降低对信号完整性的影响 奈梅亨,2023年10月11日: 基础半导体器件领域的高产能生产专家Nexperia今天宣布扩展其超低电容ESD保护二极管产品组合 。该系列器件旨在保护汽车信息娱乐应用的USB、HDMI、高速视频链路和以太网等接口的高速数据线路。 此次新增器件包括PESD18VF1BLS-Q、PESD24VF1BLS-Q、PESD30VF1BLS-Q和PESD32VF1BLS-Q,均采用DFN1006BD-2封装,可在汽车生产线中通过侧边爬锡进行光学检测。此外,PESD18VF1BBL-Q、PESD24VF1BBL-Q和PESD30VF1BBL-Q还提供紧凑型DFN1006-2封装选项。
[电源管理]
Nexperia超低结电容<font color='red'>ESD</font>保护二极管保护汽车数据接口
ESD保护元件优化高亮LED使用
随着亮度和能效的提升,延长使用寿命已为促进基于高亮度发光二极体( HB led )的固态照明设计快速发展的关键之一。然而,并非所有HB LED在这些方面皆旗鼓相当,制造商应用静电放电(ESD)保护的方式可能是影响HB LED现场使用寿命的关键因素。本文中将探讨ESD保护的重要性,阐释HB LED模组制造商藉着最先进保护技术来确保其设计将使用寿命和品质潜能提升至最优。    演进曲线外潜藏威胁讯号   绿光和蓝光LED的商业化,再结合近年来实现的每个元件平均光输出稳步快速的提升,为固态照明开启大量新的应用市场。HB LED的价格和性能已超越海兹定律(Haitz''s Law)(类似于针对电晶体密度的摩尔定律(Moore'
[电源管理]
<font color='red'>ESD</font>保护元件优化高亮LED使用
在传感器,RFID,EMI/ESD等电子领域获得突破
石墨烯价格的下降和产品质量的提高将有效地刺激下游应用加快发展。展望2018年,石墨烯在电子、复合材料、储能这三大应用领域的拓展将加快;另外,石墨烯行业标准将进一步完善,对石墨烯行业的进一步发展起到积极的作用。 领先的新技术行业研究公司壹行研(Innova Research)在总结2017年初出版的《2017年全球石墨烯趋势》的基础上,最新公布了2018全球石墨烯九大趋势。这九大趋势分别对未来石墨烯制备、行业政策与相关投资、价格走势、以及石墨烯在先进电子、储能、复合材料等各大主要应用领域的发展趋势做了展望。 趋势一:石墨烯制备技术不断突破 石墨烯制备技术不断突破。美国能源部旗下的阿贡国家实验室(Argonne Natio
[电源管理]
安森美首次在中国设立电路保护应用测试实验室
不管是设计手机还是工业电信系统,电子制造商要实现可靠的系统操作,降低产品的返修或退货比例,保护那些提供系统功能性的复杂IC就非常重要。此外,在当今全球化时代,电子系统制造商的产品很可能面对多个国家或地区乃至全球市场,可能需要符合不同的国际性系统级保护规范标准,这对系统制造商所具备的专业经验也带来了挑战。 针对电子系统制造商所面临的这些挑战,作为全球首选的高性能电路保护解决方案供应商,安森美半导体设立了专门的“保护和控制”业务部门,提供极宽范围的电路保护器件,覆盖从便携消费产品(手机)、计算机外设(硬盘驱动器)、电信和网络设备、汽车电子和工业等应用领域,既能提供低能量的ESD保护,也能提供高能量瞬态浪涌事件的晶闸管浪涌保护器件(T
[焦点新闻]
恩智浦推出用于NFC天线的ESD保护二极管
恩智浦半导体(NXP Semiconductors N.V.)(纳斯达克代码: NXPI)是全球ESD(静电放电)保护和NFC解决方案领域的领先企业,近日宣布推出一系列新的ESD保护器件,专用于保护移动设备NFC(近距离无线通讯)天线免受瞬时电压影响。 PESD18VF1BL和PESD24VF1BL为18 V和24 V双向二极管,电容低至0.35 pF(典型值)。 新型ESD保护二极管采用小型无铅DFN1006-2封装(1.0 x 0.6 x 0.48毫米,0402英寸),是如今小巧纤薄的智能手机的理想之选。 NFC天线通常与电池盖融为一体,或集成在电池中,并通过手机上的小触点连接NFC IC。 这些触点是ESD冲击
[网络通信]
恩智浦推出用于NFC天线的<font color='red'>ESD</font>保护二极管
SEMI与ESD Alliance策略结盟
国际半导体产业协会(SEMI)宣布已与电子系统设计联盟(ESD Alliance)签订合作备忘录,将于今年成为SEMI策略合作伙伴(Strategic Association Partner)。根据这项合作计划,总部位于美国加州红木城(Redwood City)的ESD Alliance于半导体设计产业生态系中的企业会员将加入SEMI,深化该联盟在全球微电子制造供应链的布局,同时也加强SEMI企业会员与半导体设计业者间的连结,促成更紧密的合作。 成为SEMI策略性合作伙伴后,ESD Alliance仍将延续现有组织使命,协助企业会员从技术、行销、经济与立法等面向切入,对半导体设计产业生态系产生正面的影响。ESD Allianc
[半导体设计/制造]
USB 2.0高速端口的ESD保护
  如今的电子系统中越来越多地采用以CMOS工艺制造的低功率逻辑芯片。这些芯片如果遭遇足够高的静电放电(ESD)电压,芯片内部的电介质上就会产生电弧,并在门氧化物层烧出显微镜可见的孔洞,造成芯片的永久损坏。 通用串行总线(USB)高速数据应用也十分普遍,用户在热插拨任何USB外设时可能会导致ESD事件。此外,在离导电表面几英寸的地方也可能发生空气放电,可能损坏USB接口及芯片。因此,设计人员必须为USB元件提供ESD保护。 业界制定了不少针对不同瞬态干扰的ESD标准,比如针对系统级ESD事件的IEC61000-4-2国际标准。另外还有一些元器件级的ESD敏感度测试标准,如人体模型(HBM)和机器模型(MM)等。USB 2
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved